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Talk Outline

Spatial Models for Lattice Data

Spatial Econometrics Models

Introduction to the Integrated Nested Laplace Approximation (INLA)

R-INLA package

Extending INLA and R-INLA

Application to (spatial) GLMMs
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Spatial Models for Lattice Data

Spatial Models for Lattice Data

Lattice data involves data measured at different areas, e.g.,
neighbourhoods, cities, provinces, states, etc.

Spatial dependence appears because neighbour areas will show similar
values of the variable of interest
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Spatial Models for Lattice Data

Models for lattice data

We have observations y = {yi}ni=1 from the n areas

y is assigned a multivariate distribution that accounts for spatial
dependence

A common way of describing spatial proximity in lattice data is by
means of an adjacency matrix W

W [i , j ] is non-zero if areas i and j are neighbours

Usually, two areas are neighbours if the share a common boundary

There are other definitions of neighbourhood

V. Gómez-Rubio (UCLM) Bayesian inference for spatial econometrics 4 / 50



Spatial Models for Lattice Data

Adjacency matrix
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Regression models

Regression models

It is often the case that, in addition to yi , we have a number of
covariates xi

Hence, we may want to regress yi on xi

In addition to the covariates we may want to account for the spatial
structure of the data

Different types of regression models can be used to model lattice data:

Generalized Linear Models (with spatial random effects)
Spatial econometrics models

Generalized Linear Mixed Models are often used
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Regression models

Linear Mixed Models

A common approach (for Gaussian data) is to use a linear regression
with random effects

Y = Xβ + Zu + ε

The vector random effects u is modelled as a MVN:

u ∼ N(0, σ2
uΣ)

Σ is defined such as it induces higher correlation with adjacent areas

Z is a design matrix for the random effects

εi ∼ N(0, σ2), i = 1, . . . , n: error term

Similar for Generalised Linear Mixed Models
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Regression models

Spatial Econometrics Models

Slightly different approach to spatial modelling

Instead of using latent effects, spatial dependence is modelled
explicitly

Autoregressive models are used to make the response variable to
depend on the values at its neighbours
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Regression models

Simultaneous Autoregresive Model (SEM)

This model includes covariates

Autoregressive on the error term

y = Xβ + u; u = ρWu + e; e ∼ N(0, σ2)

y = Xβ + ε; ε ∼ N(0, σ2(I − ρW )−1(I − ρW ′)−1)
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Regression models

Spatial Lag Model (SLM)

This model includes covariates

Autoregressive on the response

y = ρWy + Xβ + e; e ∼ N(0, σ2)

y = (I − ρW )−1Xβ + ε; ε ∼ N(0, σ2(I − ρW )−1(I − ρW ′)−1)
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Regression models

Spatial Durbin Model (SDM)

This model includes covariates

Autoregressive on the response

In addion, we include the lagged-covariates WX as another extra term
in the regression

y = ρWy + Xβ + WXγ + e = [X ,WX ][β, γ] + e; ; e ∼ N(0, σ2)

y = ρWy + XWXB + e; XWX = [X ,WX ]; B = [β, γ]

y = (I − ρW )−1XWX B + ε; ε ∼ N(0, σ2(I − ρW )−1(I − ρW ′)−1)
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Regression models

Structure of spatial random effects

There are many different ways of including spatial dependence in Σ:

Simultaneous autoregressive (SAR):

Σ = [(I − ρW )′(I − ρW )]−1

Conditional autoregressive (CAR):

Σ = (I − ρW )−1

Σi ,j depends on a function of d(i , j). For example:

Σi ,j = exp{−d(i , j)/φ}

’Mixture’ of matrices (Leroux et al.’s model):

Σ = [(1− λ)In + λM]−1; λ ∈ (0, 1)

M precision of instrinsic CAR specification
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Bayesian Inference

Bayesian Inference

Bayesian inference is based on Bayes’ rule to compute the probability
of the parameters in the model (θ) given the observed data (y):

π(θ|y) =
π(y |θ)π(θ)

π(y)

π(y |θ) is the likelihood of the model

π(θ) is the prior distribution of the parameters in the model

π(y) is a normalising constant that is often ignored

Vague priors are often used for most parameters in the model
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Bayesian Inference

Model fitting and computational issues

Fitting a Bayesian model means computing π(θ|y)

θ contains all parameters in the model and, possibly, other derived
quantities

For example, we could compute posterior probabilities of linear
predictors, random effects, sums of random effects, etc.

Depending on the likelihood and the prior distribution computing
π(θ|y) can be very difficult

In the last 20-30 years some computational approaches have been
proposed to estimate π(θ|y) with Monte Carlo methods
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Bayesian Inference

Inference with MCMC

MCMC provides simulations from the ensemble of model parameters,
i.e., a multivariate distribution

This will allow us to estimate the joint posterior distribution

However, we may be interested in a single parameter or a subset of
the parameters

Inference for this subset of parameters can be done by simply ignoring
the samples for the other parameters

Using the samples it is possible to compute the posterior distribution
of any function on the model parameters

MCMC may require lots of simulations to make valid inference

Also, we must check that the burn-in period has ended, i.e., we have
reached the posterior distribution
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Approximate Inference

Integrated Nested Laplace Approximation

Sometimes we only need marginal inference on some parameters, i.e.,
we need π(θi |y)

Rue et al. (2009) propose a way of approximating the marginal
distributions

Now we are dealing with (many) univariate distributions

This is computationally faster because numerical integration
techniques are used instead of Monte Carlo sampling
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Approximate Inference

Integrated Nested Laplace Approximation

We assume that observations y are independent given x (latent
effects) and θ = (θ1, θ2) (two sets of hyperparameters)

The model likelihood can be written down as

π(y|x, θ) =
∏
i∈I

π(yi |xi , θ)

xi is the latent linear predictor ηi and other latent effects

ηi = α +

nf∑
j=1

f (j)(uji ) +

nβ∑
k=1

βkzki + εi (1)

I represents the indices of the observations (missing observations are
not include here, for example)

θ = (θ1, θ2) is a vector of hyperparameters for the likelihood and the
distribution of the latent effects
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Approximate Inference

Integrated Nested Laplace Approximation

x is assumed to be distributed as a Gaussian Markov Random Field
with precission matrix Q(θ2)

The posterior distribution of the model parameters and
hyperparameters is:

π(x, θ|y) ∝ π(θ)π(x|θ)
∏
i∈I

π(yi |xi , θ) ∝

π(θ)|Q(θ)|n/2 exp{−1

2
xTQ(θ)x +

∑
i∈I

log(π(yi |xi , θ)}
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Approximate Inference

Integrated Nested Laplace Approximation

The marginal distributions for the latent effects and hyper-parameters can
be written as

π(xi |y) =

∫
π(xi |θ, y)π(θ|y)dθ

and

π(θj |y) =

∫
π(θ|y)dθ−j
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Approximate Inference

Integrated Nested Laplace Approximation

Rue et al. (2009) provide a simple approximation to π(θ|y), denoted by
π̃(θ|y), which is then used to compute the approximate marginal
distribution of a latent parameter xi :

π̃(xi |y) =
∑
k

π̃(xi |θk , y)× π̃(θk |y)×∆k

∆k are the weights of a particular vector of values θk in a grid for the
ensemble of hyperparameters .
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Approximate Inference

R-INLA package

Available from http://www.r-inla.org

Implementation of INLA as an R package

inla()-function similar to glm()

Model is defined in a formula

Flexible way of defining:

Likelihood
Prior
Latent effects

Provides marginals of:

Model parameters
Linear predictor
Linear combinations of model parameters

Tools to manipulate π(·|y) to compute π(f (·)|y)

Model assessment/choice: Marginal likelihood, DIC, CPO, ...
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Approximate Inference

Summary of implemented latent effects

Name in f() Model
besag Intrinsic CAR
besagproper Proper CAR
bym Convolution model
rw2d 2-D random walk
matern2d Matérn correlation

generic0 Σ = 1
τQ

−1

generic1 Σ = 1
τ (In − ρ

λmax
C )−1

seasonal Seasonal variation
ar1 Autoreg. order 1
ar Autoreg. order p
iid?d Correlated effects

with Wishart prior
mec Classical mearurement error
meb Berkson mearurement error

Full list at http://www.r-inla.org/models/latent-models
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Spatial Econometrics

INLA & Spatial econometrics models

In principle, INLA can handle a large number of models

The R-INLA package for the R software implements a number of
likelihoods and latent effects

Several spatial models are implemented (Gómez-Rubio et al., 2014)

SEM and SLM were not implemented at the time

The SAR specification was not implemented as a random effect then

Linear predictors are multiplied by (I − ρW )−1, and this is not
implemented either

What to do then? (Bivand et al., 2014, 2015)
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Spatial Econometrics

A possible approach

Conditioning on ρ, SEM and SLM become models that R-INLA can fit

We can fit different models conditioning on different values of ρ. This
will provide

π(θi |y , ρ = ρk), k = 1, 2, . . .

The values of ρ can be chosen equally spaced in (-1,1)

For each fitted model, we can compute the marginal likelihood, i.e.,
the likelihood of that model: π(y |ρ = ρk)

Our inference can be based on the model with the largest likelihood

However, we cannot obtain a marginal distribution for ρ and cannot
compute summary statistics
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Spatial Econometrics

Bayesian Model Averaging

A better aproach is to combine the different fitted models in some way

Bayesian Model Averaging provides a way of combining all these
models (Bivand et al., 2014, 2015)

For each fitted model (conditioned on a value of ρ) we have
π(θi |y , ρ = ρk) and π(y |ρ = ρk)

We can choose a prior distribution for ρ: π(ρ)

It should be noted that the marginal distribution of ρ is

π(ρ|y) =
π(y |ρ)π(ρ)

π(y)
∝ π(y |ρ)π(ρ)

The marginal distribution for ρ can be computed by fitting a curve to
the values

[ρk , π(y |ρ = ρk)π(ρ = ρk)]
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Spatial Econometrics

Marginal distribution of ρ

The marginal distribution of a parameter can be written as

π(θi |y) =

∫
π(θi , ρ|y)dρ =

∫
π(θi |y , ρ)π(ρ|y)dρ

The previous integral can be aproximated as follows:

∑
k

π(θi |y , ρ = ρk)
π(y |ρ = ρk)π(ρk)∑
k π(y |ρ = ρk)π(ρk)

=
∑
k

wkπ(θi |y , ρ = ρk)

Finally, a spline can be fitted to the resulting function so that it can
be used to compute other quantities, such as the mean, mode,
quantiles, etc.
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Spatial Econometrics

Example: Boston housing data

We will re-analyse the Boston housing data (Harrison and Rubinfeld,
1978)

Median of owner-occupied houses using relevant covariates and the
spatial structure of the data (Pace and Gilley, 1997)

We have fitted the Leroux et al.’s model using the previous approach
and MCMC to compare the estimates of the model parameters
(Bivand et al., 2015)

In the linear predictor:

Fixed effects (i.e., covariates)
Spatial effect (Leroux et al.’s model)
Error term
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Spatial Econometrics

Fitting Leroux et al.’s model

Complex variance-covariance matrix:

Σ = [(1− λ)In + λM]−1; λ ∈ (0, 1)

M structure of precision of instrinsic CAR (very sparse matrix!)

Mixture of i.i.d. Gaussian effect and CAR spatial effect

Fit models with R-INLA conditioning on λ, to obtain:

π(θ|y , λ), with function leroux.inla()

π(y |λ)

λ takes values on a fine grid

Combine models using the INLABMA package

BMA of models fitted with R-INLA
Takes a list of fitted models AND prior on λ
Returns a model in a similar format as inla()

We will be comparing our results with MCMC (CARBayes package)
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Spatial Econometrics

Fitting Leroux et al.’s model

#Define parameters for model fitting

rlambda <- seq(0.8, 0.99, length.out = 20)

#Fixed effects in the model

form2 <- log(CMEDV) ~ CRIM + ZN + INDUS + CHAS

#Fit conditioned models (in parallel!!)

lerouxmodels <- mclapply(rlambda,

function(lambda) {

leroux.inla(form2, d = as.data.frame(boston),

W = bmspB, lambda = lambda,

...

)

})

#BMA with the previous models

bmaleroux <- INLABMA(lerouxmodels, rlambda, 0)
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Spatial Econometrics

Fitting Leroux et al.’s model
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Spatial Econometrics

New slm Latent Class for Spatial Econometrics Models

Spatial Econometrics models have been added to R-INLA

R-INLA includes now a new latent effect:

x = (In − ρW )−1(Xβ + e)

W is a row-standardised adjacency matrix

ρ is a spatial autocorrelation parameter

X is a matrix of covariates, with coefficients β

e are Gaussian i.i.d. errors with variance σ2

SEM

y = Xβ + (I − ρW )−1(0 + e); e ∼ N(0, σ2I )

SLM

y = (I − ρW )−1(Xβ + e); e ∼ N(0, σ2I )
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