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Spatial Models for Lattice Data

o Lattice data involves data measured at different areas, e.g.,
neighbourhoods, cities, provinces, states, etc.

@ Spatial dependence appears because neighbour areas will show similar
values of the variable of interest

logCMEDY.
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Models for lattice data

We have observations y = {y;}"_; from the n areas

y is assigned a multivariate distribution that accounts for spatial
dependence

@ A common way of describing spatial proximity in lattice data is by
means of an adjacency matrix W

Wi, j] is non-zero if areas i and j are neighbours

Usually, two areas are neighbours if the share a common boundary

There are other definitions of neighbourhood
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Spatial Models for Lattice Data

Adjacency matrix
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Regression models

Regression models

@ It is often the case that, in addition to y;, we have a number of
covariates x;

@ Hence, we may want to regress y; on x;
@ In addition to the covariates we may want to account for the spatial
structure of the data
o Different types of regression models can be used to model lattice data:
o Generalized Linear Models (with spatial random effects)
o Spatial econometrics models
@ Generalized Linear Mixed Models are often used
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Linear Mixed Models

@ A common approach (for Gaussian data) is to use a linear regression
with random effects

Y=X6+Z2Zu+¢

@ The vector random effects u is modelled as a MVN:

u~ N(0,02X)
> is defined such as it induces higher correlation with adjacent areas

Z is a design matrix for the random effects

gi ~ N(0,02),i =1,...,n: error term

Similar for Generalised Linear Mixed Models
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Regression models

Spatial Econometrics Models

o Slightly different approach to spatial modelling

@ Instead of using latent effects, spatial dependence is modelled
explicitly

@ Autoregressive models are used to make the response variable to
depend on the values at its neighbours
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Simultaneous Autoregresive Model (SEM)

@ This model includes covariates

@ Autoregressive on the error term

y=XB+u,u=pWu+ e e~ N0,o?)

y =XB+ee~N0O,0*(I —pW)7 (I — pW')™)
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Spatial Lag Model (SLM)

@ This model includes covariates

@ Autoregressive on the response
y = pWy + XB + e;e ~ N(0,0?)

y=(—pW) " XB+e e~ NO,o*(I = pW) (I = pW')7H)
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Spatial Durbin Model (SDM)

@ This model includes covariates
@ Autoregressive on the response

@ In addion, we include the lagged-covariates WX as another extra term
in the regression

y = pWy + X5 + WXy + e = [X, WX][8,7] + & ;e ~ N(0,0°)

y = pWy + XWXB + e; XWX = [X, WX]; B=[8,7]

y=(—pW) XWX B+¢; e~ N(0,5%(I — pW) (I — pW)™)
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Regression models

Structure of spatial random effects

There are many different ways of including spatial dependence in X:
e Simultaneous autoregressive (SAR):

£ = [/ — pW) (I — pW)] !
e Conditional autoregressive (CAR):
Yy=(-pw)?
@ X;; depends on a function of d(i, /). For example:
Y =exp{—d(i,j)/¢}
@ 'Mixture’ of matrices (Leroux et al.'s model):
Y =[1-Nl+ M Xe(0,1)

M precision of instrinsic CAR specification
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Bayesian Inference

Bayesian Inference

@ Bayesian inference is based on Bayes' rule to compute the probability
of the parameters in the model () given the observed data (y):
S0l — T1OT0)
™(y)
e m(y|0) is the likelihood of the model
e m(0) is the prior distribution of the parameters in the model
e 7(y) is a normalising constant that is often ignored
@ Vague priors are often used for most parameters in the model
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Bayesian Inference

Model fitting and computational issues

e Fitting a Bayesian model means computing 7(6|y)

@ 0 contains all parameters in the model and, possibly, other derived
quantities

@ For example, we could compute posterior probabilities of linear
predictors, random effects, sums of random effects, etc.

@ Depending on the likelihood and the prior distribution computing
m(0|y) can be very difficult

@ In the last 20-30 years some computational approaches have been
proposed to estimate 7(f|y) with Monte Carlo methods
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Inference with MCMC

@ MCMC provides simulations from the ensemble of model parameters,
i.e., a multivariate distribution

@ This will allow us to estimate the joint posterior distribution

@ However, we may be interested in a single parameter or a subset of
the parameters

@ Inference for this subset of parameters can be done by simply ignoring
the samples for the other parameters

@ Using the samples it is possible to compute the posterior distribution
of any function on the model parameters

o MCMC may require lots of simulations to make valid inference

@ Also, we must check that the burn-in period has ended, i.e., we have
reached the posterior distribution
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Integrated Nested Laplace Approximation

@ Sometimes we only need marginal inference on some parameters, i.e.,
we need 7(0;|y)

@ Rue et al. (2009) propose a way of approximating the marginal
distributions

o Now we are dealing with (many) univariate distributions

@ This is computationally faster because numerical integration
techniques are used instead of Monte Carlo sampling
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Integrated Nested Laplace Approximation

@ We assume that observations y are independent given x (latent
effects) and 6 = (01, 62) (two sets of hyperparameters)

@ The model likelihood can be written down as

Y|x Hﬂ' yI|XIa

ieT

@ x; is the latent linear predictor 7; and other latent effects

ni _a—i—ZfJ)(UJ, +Zﬁkzkl+‘€l (1)
j=1

@ 7 represents the indices of the observations (missing observations are
not include here, for example)

@ 0 = (01,0,) is a vector of hyperparameters for the likelihood and the
distribution of the latent effects
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Integrated Nested Laplace Approximation

@ x is assumed to be distributed as a Gaussian Markov Random Field
with precission matrix Q(62)

@ The posterior distribution of the model parameters and
hyperparameters is:

m(x,0]y) o m(0)m(x|0) ] [ = (yilxi, 0)
i€

m(6)1Q(6)" exp{—%xTQ(O)X + > log(m(yilxi, 0)}

i€l
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Approximate Inference

Integrated Nested Laplace Approximation

The marginal distributions for the latent effects and hyper-parameters can
be written as

m(xily) = /”(Xi|9,>')7f(9ly)d9

and

=(6;ly) = / ~(6ly)d6_
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Integrated Nested Laplace Approximation

Rue et al. (2009) provide a simple approximation to 7(€|y), denoted by
7(A]y), which is then used to compute the approximate marginal
distribution of a latent parameter x;:

#(xily) = Y #(xil0k,y) x #(Okly) x Ax
P

Ay are the weights of a particular vector of values @y in a grid for the
ensemble of hyperparameters .
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R-INLA package

Available from http://www.r-inla.org
Implementation of INLA as an R package
inla()-function similar to glm()

Model is defined in a formula

Flexible way of defining:
o Likelihood
o Prior
o Latent effects

@ Provides marginals of:

o Model parameters
o Linear predictor
e Linear combinations of model parameters

Tools to manipulate 7(-|y) to compute 7(f(+)|y)
@ Model assessment/choice: Marginal likelihood, DIC, CPO, ...
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Approximate Inference

Summary of implemented latent effects

Name in £()  Model
besag Intrinsic CAR
besagproper Proper CAR
bym Convolution model
rw2d 2-D random walk
matern2d Matérn correlation
genericO Y = %Q_l
genericl r=1(,- )\FZXC)_1
seasonal Seasonal variation
ari Autoreg. order 1
ar Autoreg. order p
iid?d Correlated effects

with Wishart prior
mec Classical mearurement error
meb Berkson mearurement error

Full list at http://www.r-inla.org/models/latent-models
Bayesian inference for spatial econometrics
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Spatial Econometrics

INLA & Spatial econometrics models

@ In principle, INLA can handle a large number of models

The R-INLA package for the R software implements a number of
likelihoods and latent effects

Several spatial models are implemented (Gémez-Rubio et al., 2014)
SEM and SLM were not implemented at the time

The SAR specification was not implemented as a random effect then

Linear predictors are multiplied by (/ — pW)~1, and this is not
implemented either

What to do then? (Bivand et al., 2014, 2015)
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A possible approach

@ Conditioning on p, SEM and SLM become models that R-INLA can fit

@ We can fit different models conditioning on different values of p. This
will provide

ﬂ—(ai‘y7p:pk)7 k= 1727"'
@ The values of p can be chosen equally spaced in (-1,1)

@ For each fitted model, we can compute the marginal likelihood, i.e.,
the likelihood of that model: 7(y|p = pk)

@ Our inference can be based on the model with the largest likelihood

@ However, we cannot obtain a marginal distribution for p and cannot
compute summary statistics
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Bayesian Model Averaging

@ A better aproach is to combine the different fitted models in some way
@ Bayesian Model Averaging provides a way of combining all these
models (Bivand et al., 2014, 2015)
@ For each fitted model (conditioned on a value of p) we have
m(0ily, p = pi) and w(y|p = pi)
@ We can choose a prior distribution for p: 7(p)
@ It should be noted that the marginal distribution of p is

(ylp)r(p)

) = m(ylp)m(p)

m(ply) =

~—

@ The marginal distribution for p can be computed by fitting a curve to
the values

[ok, w(ylp = p)m(p = pi)]
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Marginal distribution of p

@ The marginal distribution of a parameter can be written as

w(6ily) = / 765, ply)dp = / w(6:ly, p)(oly)dp

@ The previous integral can be aproximated as follows:

oo oy WP =pm(ok)
;W(H,\y,p—pk)zkﬁmp_pk)ﬁ(pk) —zk: «m(Bily, p = pi)

o Finally, a spline can be fitted to the resulting function so that it can

be used to compute other quantities, such as the mean, mode,
quantiles, etc.
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Spatial Econometrics

Example: Boston housing data

@ We will re-analyse the Boston housing data (Harrison and Rubinfeld,
1978)

@ Median of owner-occupied houses using relevant covariates and the
spatial structure of the data (Pace and Gilley, 1997)

@ We have fitted the Leroux et al.’s model using the previous approach
and MCMC to compare the estimates of the model parameters
(Bivand et al., 2015)

@ In the linear predictor:

o Fixed effects (i.e., covariates)
o Spatial effect (Leroux et al.’s model)
o Error term
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Spatial Econometrics

Fitting Leroux et al.’s model
@ Complex variance-covariance matrix:

Y =[(1-Nl+ ML Ae(0,1)

M structure of precision of instrinsic CAR (very sparse matrix!)
Mixture of i.i.d. Gaussian effect and CAR spatial effect

Fit models with R-INLA conditioning on A, to obtain:
o 7(0|y, ), with function leroux.inla()
o m(y|A)

A takes values on a fine grid

Combine models using the INLABMA package

o BMA of models fitted with R-INLA
o Takes a list of fitted models AND prior on A
o Returns a model in a similar format as inla()

e We will be comparing our results with MCMC (CARBayes package)
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Spatial Econometrics

Fitting Leroux et al.’s model

#Define parameters for model fitting
rlambda <- seq(0.8, 0.99, length.out = 20)

#Fixed effects in the model
form2 <- log(CMEDV) ~ CRIM + ZN + INDUS + CHAS

#Fit conditioned models (in parallel!!)
lerouxmodels <- mclapply(rlambda,
function(lambda) {
leroux.inla(form2, d = as.data.frame(boston),
W = bmspB, lambda = lambda,

)
b

#BMA with the previous models
bmaleroux <- INLABMA(lerouxmodels, rlambda, 0)
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Spatial Ecol etrics

Fitting Leroux et al.’s model

Marginal distribution of A

Marginal distribution of 1/02 error
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Spatial Econometrics

New sim Latent Class for Spatial Econometrics Models

@ Spatial Econometrics models have been added to R-INLA
@ R-INLA includes now a new latent effect:

x = (I — pW)"H(XB + e)
W is a row-standardised adjacency matrix
p is a spatial autocorrelation parameter
X is a matrix of covariates, with coefficients 5
e are Gaussian i.i.d. errors with variance o2

SEM

y=XB+ (I —pW) 10 +e); e~ N(0,0%))
e SLM
y = (1= pW) " (XB+ e); e~ N(0,0])
Bayesian inference for spatial econometrics
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