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ABSTRACT

In this article, we present an analysis of the effectiveness of various portfolio optimization
strategies applied to the stocks included in the Spanish Ibex 35 index, for a period of 14 years,
from 2001 until 2014. The period under study includes episodes of volatility and instability in
financial markets, incorporating the Global Financial Crisis and the European Sovereign Debt
Crisis. This implies a challenge in portfolio optimization strategies since the methodologies are
restricted to the assignment of positive weights. We have taken for asset allocation the daily
returns with an estimation window equal to 1 year and we hold portfolio assets for another year.
This article attempts to influence the discussion over whether the naive diversification proves to
be an effective strategy as opposed to portfolio optimization models. For that, we evaluate the
out-of-sample performance of 15 strategies for asset allocation in the Ibex 35, before and after of
the Global Financial Crisis. Our results suggest that a large number of strategies outperform to
the 1/N rule and to the Ibex 35 index in terms of return, Sharpe ratio and lower VaR and CVaR.
The mean-variance portfolio of Markowitz with short-sale constraints is the only strategy that
renders a Sharpe ratio statistically different from Ibex 35 index in the 2001–2007 and 2008–2014
time periods.
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I. Introduction

Markowitz (1952, 1959) suggested that a rational
investor should choose a portfolio with the lowest
risk for a given level of return instead of investing in
individual assets, calling these portfolios as efficient.
This approach has been the first model of portfolio
selection in the literature, which is known as mean-
variance of Markowitz. Although the mean-variance
methodology has become the central base of the clas-
sical finance, leading directly to the development of the
Capital Asset Pricing Model (CAPM) by Sharpe
(1964), Lintner (1965) andMossin (1966), the practical
application is surrounded by difficulties due to their
poor out-of-sample performance since the expected
returns are estimated based only on sample informa-
tion, which results in an estimation error.

A latter approach to addressing the estimation
error involves the application of Bayesian techni-
ques, or shrinkage estimators. Jorion (1991) use the
Bayesian approach to overcome the weakness of the
expected returns estimate only by sample

information. More recent approaches are based on
the asset pricing model (see Pástor 2000; Pástor and
Stambaugh 2000); and the imposition of rules for
short-selling constraint (e.g., Frost and Savarino
1988; Chopra 1993; Jagannathan and Ma 2003).
Similarly, in the literature have been introduced the
minimum-variance portfolios, based on the estima-
tion of the covariance matrix, which is not generally
as sensitive to estimation error and provides a better
out-of-sample performance (see Chan, Karceski, and
Lakonishok 1999; Jagannathan and Ma 2003; among
others).

It is also common to use robust optimization
techniques to overcome the problems of stochastic
programming techniques (see, for example,
Quaranta and Zaffaroni 2008; DeMiguel, Garlappi,
and Uppal 2009; DeMiguel and Nogales 2009; Harris
and Mazibas 2013; Allen et al. 2014a, 2014b; Xing,
Hu, and Yang 2014.). Choueifaty and Coignard
(2008) and Choueifaty, Froidure, and Reynier
(2013) proposed an approach based on the portfolio
with the highest ratio of diversification. In addition,
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Qian (2005, 2006, 2011) introduced the portfolio
with equal contribution to risk, which assigns differ-
ent weights to assets so that their contribution to the
overall volatility of the portfolio is proportional; the
properties of this strategy were analysed by Maillard,
Roncalli, and Teïletche (2010). These methodologies

aim to defend against the possible uncertainty in the

parameters of the problem given that these are not

exactly known.

In recent years, the interest of the authorities has

increased considerably in the measurement of the

effects of unexpected losses associated with extreme

events in financial markets. This leads directly to

improved methodologies for measurement and

quantification of risk. In this sense, it is considered

that the traditional framework of mean-variance,

frequently used in the selection of efficient portfo-

lios, should be revised to introduce more complex

risk measures than the simple SD (that is, risk mea-

sures based on the quantile). This is the context that

explains the choice of Value at Risk (VaR) as syn-

thetic risk measure that can express the market risk

of a financial asset or portfolio (JP Morgan 1994).

Nevertheless, VaR has been the subject of strong

criticism, despite the widespread use in banking

supervision, VaR lacks subadditivity so it is not a

coherent risk measure for the general distribution of

loss, and this goes against the diversification princi-

ple (see Artzner et al. 1997, 1999).

Moreover, the absence of convexity of VaR causes

considerable difficulties in portfolio selection models

based on minimizing the same. Furthermore, the

VaR has been criticized for not being able to quan-

tify the so-called ‘tail risk’. This has led some

researchers to define new risk measures such as

Conditional Value at Risk (ES or CVaR) (see

Rockafellar and Uryasev 2000, 2002; Pflug 2000;

Gaivoronski and Pflug 2005).

There has been a rapid impulse in recent years in

the literature about the use of CVaR in portfolio

theory. Additionally, the CVaR has the mathematical

advantage that can be minimized using linear pro-

gramming methods. A simple description of the

approach to minimize CVaR and CVaR constrained

optimization problems can be found in Chekhlov,

Uryasev, and Zabarankin (2000). Krokhmal,

Palmquist, and Uryasev (2002) compared the CVaR

and Conditional Drawdown-at-Risk (CDAR)

approaches to minimal risk portfolios in some

hedge funds. Agarwal and Naik (2004), and

Giamouridis and Vrontos (2007) compared the tra-

ditional mean-variance approach with CVaR portfo-

lios built using strategies of hedge funds.

Our objective in this article is to compare the out-

of-sample performance of the naive strategy regard-

ing various models for the construction of efficient

portfolios. It should be noted that a debate exists in

the literature about whether the gains from optimi-

zation are reduced by estimation errors or uncer-

tainty in the parameters, which influence in the

portfolio optimization process. In this sense, there

is no consensus in the literature on whether the

naive diversification is more effective than other

portfolio strategies (see recent works, such as

DeMiguel, Garlappi, and Uppal 2009; Tu and Zhou

2011; Kirby and Ostdiek 2012; and Allen et al. 2014a,

2014b).

For this purpose, we considered a number of

optimization models: (a) the classical mean-variance

approach (Markowitz 1952, 1959) and the minimum

variance approach (Jagannathan and Ma 2003); (b)

robust optimization techniques, as the most diversi-

fied portfolio(see Choueifaty and Coignard 2008;

Choueifaty, Froidure, and Reynier 2013) and the

equally weighted risk contributions portfolios (see

Qian 2005, 2006, 2011); (c) portfolio optimization

based on Conditional Value at Risk, ‘CVaR’

(Rockafellar and Uryasev 2000, 2002; Alexander

and Baptista 2004; Quaranta and Zaffaroni 2008);

(d) functional approach based on risk measures

such as the ‘Maximum draw-down’ (MaxDD), the

‘Average draw-down’ (AvDD), and the ‘Conditional

draw-down at risk’ (CDAR), all proposed by

Chekhlov, Uryasev, and Zabarankin (2000, 2005);

as well as the Conditional draw-down at risk,

‘MinCDaR’ (see Chekhlov, Uryasev, and

Zabarankin 2005; Kuutan 2007); (e) Young (1998)’s

minimax optimization model, based on minimizing

risk and optimizing the risk/return ratio; (f) applica-

tion of Copulae theory to build the minimum tail-

dependent portfolio, where the variance–covariance

matrix is replaced by lower tail dependence coeffi-

cient (see Frahm, Junker, and Schmidt 2005; Fischer

and Dörflinger 2006; Schmidt and Stadtmüller

2006); and (g) a defensive approach to systemic

risk by beta strategy (‘Low Beta’). The beta coeffi-

cient (β) is used to assess systemic risk of an asset in

the CAPM model (see Sharpe 1964; Lintner 1965;
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Mossin 1966), as related volatility of an asset, mar-
ket, and the correlation between them. To conclude,
we impose a short-selling constraint in the models.

Following DeMiguel, Garlappi, and Uppal (2009),
it is of paramount importance to compare the results
of different methodologies with the ‘naive diversifi-
cation of 1/N’, which assigns equal weight to the
risky assets. The 1/N strategy has proved as a diffi-
cult alternative to beat, demonstrating the practical
difficulties to obtain an efficient portfolio
(DeMiguel, Garlappi, and Uppal 2009; Allen et al.
2014a.). Therefore, we propose an efficiency analysis
of the various methodologies compared with the
naive diversification of 1/N and the main Spanish
stock index, Ibex 35.

For the evaluation of the out-of-sample perfor-
mance, we use five criteria. The first one is the
Sharpe ratio as a measure of the excess return
(Sharpe 1994). To test if the Sharpe ratio of two
strategies is statistically different, we obtain the
p-value of the difference, using the approach suggested
by Jobson and Korkie (1981), after making the correc-
tion pointed out in Memmel (2003). Similarly, we
calculate the diversification ratio as a measure of the
degree of portfolio diversification (Choueifaty and
Coignard 2008; Choueifaty, Froidure, and Reynier
2013.); the concentration ratio, which is simply the
normalized Herfindahl–Hirschmann index (see
Hirschman 1964); The Value at Risk (VaR) as syn-
thetic risk measure that can express the market risk of
a financial asset or portfolio, and the expected shortfall
(ES or CVaR) as a coherent risk measure that takes
into account the ‘tail risk’.

As for the data, we use a sample of the daily values
of the stocks included into the Ibex 35 index. The
Ibex 35 index is the official index of the Spanish
Continuous Market. The index is comprised of the
35 most liquid stocks traded on the Continuous mar-
ket. The prices are adjusted for dividend and these are
taken from Datastream. The sample period, running
from 1 January 2000 to 31 December 2014, encom-
passes two episodes of turmoil in financial markets:
the Global Financial Crisis, which began in 2008; and
the European Sovereign Debt Crisis. The data set is
available at the link provided in the supplementary
data set section of this paper.

The Spanish stock market has combined from the
earlier nineties, when its main stock index Ibex 35
was created; sharp rises with periods of losses.
Additionally, the improvement on the technical,
operational and organizational systems supporting
the market has enabled it to channel large volumes
of investment and have made it more transparent,
liquid and effective. The pooling of interests has
enabled Spain to reach a significant size in the
European context and a diversified structure that
covers the whole chain of activities in the markets,
from trading to settlement. The Ibex 35 stock index
has been the subject of numerous studies. For exam-
ple, Matallin and Nieto (2002) analyse the manage-
ment of risky assets and mixed risky mutual funds in
relation to alternative investment in the Ibex 35.
Matallín and Fernández-Izquierdo (2003) examine

the extent of the passive timing effect in portfolio

management using different portfolios representa-

tive of different levels of risk for the Spanish market.

Rosillo, De La Fuente, and Brugos (2013) examine

the result of the application of technical analysis in

the Spanish stock market using different indicators

of the quantitative analysis. Fernandez-Perez,

Fernández-Rodríguez, and Sosvilla-Rivero (2014)

show that the term structure of interest rates has

some information content that helps to better fore-

cast the probability of bear markets in the Ibex 35.

Finally, Miralles-Quirós, Miralles-Quirós, and Daza-

Izquierdo (2015) propose different trading strategies

for the Ibex 35, based on the combination of differ-

ent strategies and on the predictive power of the

returns from the opening of the Spanish stock mar-

ket and the US market.

We used the daily returns with an estimate win-

dow equal to one year, 252 days. Therefore, the

portfolios have been built for a sample size

Nt ¼ 252, and the results have been evaluated out

of sample for the next period Ntþ1, (see Table 1). We

considered only those stocks that have shown con-

tinuity within the index during the period of

estimation.1 We show, in Table 1, the assets number

in each period. In the Appendix (Table A2), we

report the asset ´considered in each time period.

The rest of the article is organized as follows. In

Section 2, we describe the various methodologies

1In the Appendix of this article, we include a summary table with the main statistical of the portfolios, and another table with the assets that we consider in
each period.
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used for portfolio construction. In Section 3, we

explain the methodology for performance evalua-

tion. In Section 4, we show the results against the

Ibex 35 index and the naive strategy of 1/N. In

Section 5, we present some concluding remarks.

II. Methodological description

Mean-variance portfolio

The efficient frontier of mean-variance is defined as

the set of values μi; σi
2

 !

that resolves the following

multi-objective optimization problem:

maxwμ; (1)

minw

Xw
;

s:t:w1 ¼ 1;

where w is the N ! 1ð Þ vector of weights and Σ

denotes the variance–covariance matrix of asset

returns with elements outside the diagonal and σij

σ
2
i the ith element of the main diagonal.

Each point on the efficient frontier μi; σ
2
i

 !

corre-

sponds to an efficient portfolio where the investor

gets a maximum return for a given level of risk σi.

The efficient frontier of mean-variance reflects the

relationship between return and risk, introducing

the trade-off concept of risk–return in the financial

markets. Therefore, it describe the level of return μi

given a risk exposure σi, or seen from a reverse

perspective, the lower variability σi for a return

level μi (Markowitz 1952, 1959).

A risk-averse rational investor will make an

investment decision on the efficient frontier when

the risky asset returns exhibit a multivariate normal

distribution or if her utility function is quadratic.

The best choice will reflect the investor’s willingness

to trade off risk against expected return.

To solve efficiently the problem of quadratic opti-

mization with two objectives described above, the

problem can be converted into a quadratic optimiza-

tion problem for different levels of return μi (Tsao

2010).

minw

Xw
; (2)

s:t: wμ ¼ μi;

s:t: w1 ¼ 1;

s:t: w $ 0:

The expected return and the variance of the port-

folio are wμ, and w

P

w; respectively. In this article,

we solve the above quadratic optimization problem

and establish an expected return μi equal to the

average return on the assets that are considered in

the optimization problem. We have also included a

short-selling restriction such that w $ 0.

Minimum-variance portfolio

We use the previous optimization problem to assign

the weights w to each asset in the minimum-variance

portfolio, but not including the restriction on

returns, wμ ¼ μi.

minw

X

w; (3)

s:t: w1 ¼ 1;

s:t: w $ 0:

We obtain the portfolio that provides the minimum

variance σ
2
i , given any return μi in the efficient frontier

of mean-variance. In contrast to the mean-variance

portfolio, the minimum variance weight vector does

not depend of the expected return on assets (see

Jagannathan and Ma 2003, for a study of the properties).

Naive diversification

Several studies confirm the existence of some inves-

tors who distribute their wealth through naive diver-

sification strategy. Typically they invest in a few

assets alike (see Benartzi and Thaler 2001;

Huberman and Jiang 2006). This fact does not

prove that the naive diversification is a good strat-

egy, since investors may select a portfolio that is not

within the efficient frontier, or she may choose the

wrong point in it. Both situations involve a cost,

Table 1. Number of assets by time period.

Time period Number of risky assets

03/01/2000–28/12/2001 21
02/01/2001–30/12/2002 23
02/01/2002–30/12/2003 25
02/01/2003–30/12/2004 26
02/01/2004–30/12/2005 29
03/01/2005–29/12/2006 29
02/01/2006–28/12/2007 30
02/01/2007–30/12/2008 29
02/01/2008–30/12/2009 30
02/01/2009–30/12/2010 31
04/01/2010–30/12/2011 31
03/01/2011–31/12/2012 32
02/01/2012–31/12/2013 33
02/01/2013–31/12/2014 35
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where the second cost is the most important (see

Brennan and Torous 1999).

The naive strategy involves a weight distribution

wj ¼ 1=N for all risky assets in the portfolio. This

strategy ignores the data and does not involve any

estimation or optimization. DeMiguel, Garlappi, and

Uppal (2009) suggest that the expected returns are

proportional to total risk instead systematic risk.

Equal risk contributed (ERC) portfolio

The portfolios built under the criterion of minimum

variance and equally weighted (naive strategy 1/N)

are of great interest because they are not based on

the expected average returns and therefore they are

supposed to be robust. Although the minimum-var-

iance portfolios generally have the disadvantage of a

high concentration ratio, it can be limited through

diversification (see Qian 2005).

Here is where the equal risk contributed portfolio

is located, which assigns different weights to active

so that the contribution of these on total portfolio

volatility is proportional. Therefore, the diversifica-

tion is achieved by a weight vector, which is char-

acterized by a distribution of less concentrated

portfolio. The ERC portfolio was introduced in the

literature by Qian (2005, 2006, 2011) and their prop-

erties were analysed by Maillard, Roncalli, and

Teïletche (2010).

Maillard, Roncalli, and Teïletche (2010) showed

that when it comes to the SD of the portfolio, the

ERC solution takes an intermediate position between

a minimum-variance portfolio and an equally

weighted portfolio. Therefore, the resulting portfolio

is similar to a minimum-variance portfolio under

additional diversification restrictions.

Let M wi; . . . ;wNð Þ denote a measure of homoge-

neous risk, which is a function weight wi of each

asset in the portfolio. By Euler’s theorem,

M ¼ α

P

N

i¼1

wi
@M
@wi

, where α is the degree of homoge-

neity of M. This leads us to consider the contribu-

tion to the risk of asset i to be defined in the form

CiMw2Ω ¼ wi
@Mw2Ω
@wi

(4)

The measure of risk Mw2Ω can be the SD of the

portfolio, the value at risk or the expected shortfall if

the degree of homogeneity is one. The portfolio risk

is equal to the sum of the risk contributions. If we

introduce the formula for the SD portfolio σ wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

w0Σw
p

to Mw2Ω, then the partial derivatives in the

above equation are given by

@σ wð Þ
@wi

¼
wiσ

2
i þ
PN

i�j wiσij

σ wð Þ (5)

These N partial derivatives are proportional to the

ith row of Σwð Þi, so the problem for the ERC port-

folio with a short-sale constraints and a budget con-

straint is

PERC : wi Σwð Þi ¼ wj Σwð Þj;"i; j (6)

0 ' wi ' 1

w0i ¼ 1

where i is an N ( 1ð Þ vector of ones. The optimal

solution of ERC is valid if the value of the objective

function is zero, and this only occurs when all con-

tributions imply equal risk. A closed-form solution

can only be derived under the assumption that all

asset pairs share the same correlation coefficient.

Under this assumption, the optimal weights are

determined by the ratio of the inverse volatility of

the ith asset and the average of the inverse asset

volatilities (see Pfaff 2013).

Most diversified portfolio

Choueifaty and Coignard (2008) and Choueifaty,

Froidure, and Reynier (2013) studied the theoretical

and empirical properties of portfolios when diversi-

fication is used as a criterion. To do this, they estab-

lished a measure for which the degree of

diversification for a long portfolio could be evalu-

ated. We define the diversification ratio (DR) to any

portfolio P as

DR Pð Þ ¼ w0σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

w0 Pw
p (7)

The numerator is the weighted average volatility

of the individual assets, divided by the volatility of

the portfolio. This relationship has a lower limit of

one in the case of a portfolio composed only by an
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asset. Choueifaty, Froidure, and Reynier (2013) show

that the portfolio characterized by a highly concen-

trated or with strongly correlated asset returns

would qualify as being poorly diversified, so that

DR Pð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρþ CRð Þ $ ρCR
p (8)

where ρ denotes the volatility-weighted average cor-

relation and CR is the volatility-weighted concentra-

tion ratio. The DR only depends on the volatility-

weighted average correlations in the case of a naive

allocation.

Choueifaty, Froidure, and Reynier (2013) estab-

lished the conditions for the most diversified portfo-

lio by introducing a set of synthetic assets that share

the same volatility, such that

D Sð Þ ¼ S0P
S

ffiffiffiffiffiffiffiffiffiffiffi

S0VsS
p (9)

where S is a portfolio composed by synthetic assets,

and VS is the covariance matrix of synthetic assets. If

we have to S0P
S ¼ 1, then to maximize D Sð Þ is

equivalent to maximizing 1
ffiffiffiffiffiffiffiffi

S0VsS
p under ΓS restric-

tions. VS is equal to the correlation matrix C of

initial assets, so that to maximize the diversification

ratio is equivalent to minimizing

S0CS: (10)

Thus, if the assets have the same volatility, the

diversification ratio is maximized by minimizing

w0Cw. Therefore, the objective function coincides

with the minimum-variance portfolio, although it is

used in the correlation matrix.

The impact of asset volatility is lower in the more

diversified portfolio compared with the minimum-

variance portfolio (see Pfaff 2013). The weights are

retrieved by intermediate vector rescaling weights

with SDs of asset returns. The optimal weight vector

is determined in two steps: first, an allocation is

determined that yields a solution for a least correlated

asset mix. This solution is then inversely adjusted by

the asset volatilities, and later, the weights of the

assets are adjusted inversely by their volatilities.

Minimum tail-dependent portfolio

Minimum tail-dependent portfolio is determined

through replacing the variance–covariance matrix

by matrix coefficients of lower tail dependence. In

that sense, the lower tail of the correlation coefficient

measures the dependence of the relationship

between the asset returns when these are extremely

negative. It is possible to find a scheme with various

nonparametric estimators for minimum tail-depen-

dent portfolio in Frahm, Junker, and Schmidt

(2005), and Fischer and Dörflinger (2006) and

Schmidt and Stadtmüller (2006).

The copulae theory was introduced by Sklar

(1959). Sklar’s theorem states that there is a C func-

tion, called copulae, which establishes the functional

relationship between the joint distribution and their

univariate marginal distribution functions. Formally,

let x ¼ x1; x2ð Þ be a two-dimensional random vector

with joint distribution function F x1; x2ð Þ and mar-

ginal distributions Fi xið Þ; i ¼ 1; 2; there will be a

copulae C u1; u2ð Þ such that

F x1; x2ð Þ ¼ P X1< x1;X2<x2ð Þ ¼ C F1 x1ð Þ; F2 x2ð Þð Þ:
(11)

Moreover, Sklar’s theorem also provides that if Fi

are continuous, then the copulae C u1; u2ð Þ is unique.
An important feature of copulae is that it allows dif-

ferent degrees of dependency on the tail. The upper

tail dependence λUð Þ exists when there is a positive

likelihood that positive outliers are given jointly; while

the lower tail dependence λL, exists when there is a

negative likelihood that negative outliers are given

jointly (see Boubaker and Sghaier 2013). Thereby, we

define the lower tail dependence coefficient as follows:

λL ¼ lim
u!0

C u; uð Þ
u

(12)

This limit can be interpreted as a conditional

probability, therefore, the lower tail dependence

coefficient is limited in the range 0; 1½ ): The limits

are: for an independent copulae λL ¼ 0ð Þ, and for a

co-monotonic copulae λL ¼ 1ð Þ. Nonparametric

estimators for λL are derived from empirical copulae.

For a given sample paired observations N,

X1;Y1ð Þ; . . . ; ðXN;YN), with order statistics X 1ð Þ *
X 2ð Þ . . . * X Nð Þ and Y 1ð Þ * Y 2ð Þ . . . * Y Nð Þ, the

empirical copulae is defined as

CN
i

N
;
j

N

# $

¼ 1

N

X

N

l¼1

I Xl * X ið Þ ^ Yl * Yj

& '

;

(13)
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with i; j ¼ 1; . . . ;N and I is the indicator function,

which has a value of 1 if the condition in parentheses

is true. CN takes a zero value for i; j ¼ 0.

In the literature, there are several consistent and

asymptotically efficient estimators of λL, although

this depend on a threshold parameter k, that is the

number of statistical order. It is very important to

correctly select k in order to estimate the lower tail

dependence coefficient; selecting too small a k will

result in an inaccurate estimation and a high bias.

For example, the following nonparametric

method for estimating of λL is derived from a mix-

ture of co-monotonous copulae and independent

copulae. The lower tail dependence coefficient is

the weight parameter between the two copulae (see

Pfaff 2013). So that

λL N; kð Þ ¼
Pk

i¼1 CN
i
N
; i
N

! "

# i
N

! "2
# $

i
N

! "

# i
N

! "2
# $

Pk
i¼1

i
N
# i

N

! "2
# $2

(14)

CVaR portfolio

Rockafellar and Uryasev (2000) have advocated for

CVaR as a useful measure of risk. Pflug (2000)

showed that CVaR is a coherent risk measure with

a number of attractive and desirable properties such

as monotonicity, translational invariance, positive

homogeneity, further CVaR satisfies subadditivity

and it is convex.

CVaR is proposed as a method to calculate the

market risk arising as a complementary measure to

VaR. CVaR is applicable to non-symmetric distribu-

tions loss, which takes into account risks beyond the

VaR. Furthermore, CVaR accomplishes convexity

property with what is possible to identify a global

optimum point.

The upper conditional value at risk CVaRþð Þ is

defined as expected losses exceed strictly the VaR;

and the lower conditional value at risk CVaR#ð Þ is

defined as weakly losses exceeding the VaR (greater

or equal losses to VaR). Thus, the conditional value

at risk is equal to the weighted average VaR and

CVaRþ. CVaR quantifies the excess losses of VaR

and acts as an upper bound for the VaR. Therefore,

portfolios with low CVaR also have a low VaR. A

number of research reports apply CVaR to portfolio

optimization problems (see, for example, and

Rockafellar and Uryasev 2000, 2002; Andersson

et al. 2001; Alexander and Baptista 2004;

Rockafellar, Uryasev, and Zabarankin 2006).

In terms of selection of portfolios, CVaR can be

represented as a minimization problem of nonlinear

programming with an objective function given as

minw;υ
1

na

X

n

i¼1

maxð0; υ#
X

m

j¼1

wjri;j

" #

(15)

where υ is the quantile α of the distribution. In the

discrete case, Rockafellar and Uryasev (2000) show

that it is possible to convert this problem into a

linear programming problem by introducing auxili-

ary variables, so that

minw;d;υ
1

na

X

n

i¼1

di þ υ (16)

X

m

j¼1

wjri;j þ υ % #di;" 2 1; . . . ; nf g

X

m

j¼1

wjμj ¼ C

X

m

j¼1

wj ¼ 1

wj % 0;"j 2 1; . . . ; nf g

di % 0;"i 2 1; . . . ; nf g

where υ represents the VaR in the coverage ratio, α

and di are deviations below the VaR (see Allen et al.

2014b). If the CVaR is minimized, simultaneously,

the VAR also will be minimized.

Optimal draw-down portfolios

They are portfolio optimization problems that try to

achieve weight solutions with respect to the portfo-

lio’s draw-down. This kind of optimization was pro-

posed by Chekhlov, Uryasev, and Zabarankin (2000,

2005). The task of finding optimal portfolio alloca-

tions with respect to draw-down is of considerable

interest to asset managers, as it is possible to avoid,

somehow, large withdrawals and/or loss of revenue

management.

The draw-down of a portfolio at time t is defined

as the difference between the maximum uncom-

pounded portfolio value prior to t and its value at t.

Formally, denote by W w; tð Þ ¼ y0tw the
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uncompounded portfolio value at time t, with w the

portfolio weights for the N assets included in it, and yt
is the accumulated returns. Then the draw-down,

D w; tð Þ; is defined as

D w; tð Þ ¼ max0#τ#1 W w; τð Þf g & W w; tð Þ: (17)

Chekhlov, Uryasev, and Zabarankin (2000)

deducted three functional measures of risk: maxi-

mum draw-down (MaxDD), average draw-down

(AvDD) and conditional draw-down at risk

(CDaR). CDaR is dependent on the chosen confi-

dence level α. CDaR is a measure of functional risk

and not a risk measure as in the case of CVaR. The

limiting cases of this family of risk functions are

MaxDD and AvDD,

CDaR wð Þα ¼ min
ζ

ζ
1

1 & αð ÞT

ð0

T

!

D w; tð Þ & ζ

"þ

dt

# $

(18)

where ζ is a threshold value for the draw-downs, so

that only 1 & αð ÞT observations exceed this value.

For α ! 1, CDaR approaches the maximum

draw-down: CDaR wð Þα!1 ¼ MaxDD wð Þ ¼

max0#t#T D w; tð Þf g: The AvDD result for α ¼ 0

is CDaR wð Þα¼0 ¼ AvDD wð Þ ¼ 1=Tð Þ

ð0

T

D w; tð Þdt.

The portfolio optimization is expressed in discrete

terms and the objective is defined as maximizing the

annualized average return of the portfolio (see Pfaff

2013),

R wð Þ ¼
1

dC
y0

T
w (19)

where d is the number of years in the time interval

0;T½ +. In short, we consider the three functional risk

measures, MaxDD, AvDD and CDaR, proposed by

Chekhlov, Uryasev, and Zabarankin (2000, 2005).

Further, we consider the minimization of CDaR:

PMaxDD ¼ arg maxw;u R wð Þ ¼
1

dC
y

T
w (20)

uk & y0
kw # v1C

uk , y0
kw

uk , uk&1

u0 ¼ 0

where u denotes a T þ 1 - 1ð Þ vector of slack vari-

ables in the program formulation, in effect, the max-

imum portfolio values are up to time period k with

1 # k # T. When the portfolio is optimized with

regard to limiting of the average draw-down, only

the first set of inequality constraints needs to be

replaced with the discrete analogue of the mean

draw-down expressed in continuous time as indi-

cated above (see Pfaff 2013), which result in

PAVDD ¼ arg max w;u R wð Þ ¼
1

dC
y0
Tw; (21)

1

T

X

T

k¼1

uk & y0
kw

& '

# v2C

uk , y0
kw

uk , uk&1

u0 ¼ 0:

For the CDaR linear programming problem it is

necessary to introduce two additional auxiliary vari-

ables, the threshold draw-down value ζ dependent

on the confidence level α, and the T - 1ð Þ vector z,

representing the weak threshold exceedances; so that

PCDaR ¼ arg maxw;u;z;ζ R wð Þ ¼
1

dC
y0
Tw (22)

ζ þ
1

1 & αð ÞT

X

T

k¼1

zk # ν3C;

zk , uk & y0
kw & ζ;

zk , 0;

uk , y0kw;

uk , uk&1;

u0 ¼ 0:

The minimization of CDaR (see Chekhlov,

Uryasev, and Zabarankin 2005; Kuutan 2007) can

be obtained similarly to the conditional value at

risk (CVaR) through linear optimization, but we

have to introduce auxiliary variables:

PMinCDaR ¼ argminy þ
1

1 & αð ÞT

X

T

t¼1

zk; (23)

zk , uk & rp w; tð Þ & y;

zk , 0;

uk , rp w; tð Þ;

uk , uk&1;

where y is the threshold value of the accumulative dis-

tribution function D w; tð Þ, and zk; uk are auxiliary

variables.

The limitations uk , rp w; tð Þ; and uk , uk&1

replace linearly the higher value of the portfolio till

the moment t : max rp w; tð Þ
( )

. The first constraint

ensures that uk is always higher or at least equal to
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the portfolio accumulated return in the moment k,

and the second constraint ensures that uk is always

higher or at least equal to the previous value (see

Kuutan 2007). Before of the optimization process, y

is a free variable, after the optimization process it is

the CDaRα for the MinCDaR portfolio. Thus, if we

minimize the function Hα w; yð Þ, we simultaneously

obtain both values (see Albina Unger 2014).

Minimum tail-dependent portfolio based in Clayton

copulae and low beta strategy

The minimum tail-dependent is derived from a

Clayton copulae. The Clayton copulae belongs to

the family of Archimedean copulae; its one of the

most used in the literature (see Clayton 1978). An

Archimedean generator, or generator, is a continu-

ous decreasing function ψ : 0;1½ $ ! 0; 1½ $, which

complies with ψ 0ð Þ ¼ 1;ψ 1ð Þ :¼ limt!1ψ tð Þ ¼

0; and that is strictly decreasing on

0; inf t : ψ tð Þ ¼ 0f g½ $: The set of all functions is

denoted by Ψ:

An Archimedean generator ψ 2 Ψ is called strict

if ψ tð Þ < 0 for all t 2 0;1½ $. A d-dimensional copu-

lae C is called Archimedean (see Hofert and Scherer

2011) if it allows the representation

C uð Þ ¼ C u;ψð Þ :¼ ψ ψ*1ðu1

 !

þ . . . þ ψ*1 udð ÞÞ; u 2 Id

(24)

for some ψ 2 Ψ with inverse ψ*1 : 0; 1½ $ ! 0;1½ $;

where ψ*1 0ð Þ :¼ inf t : ψ tð Þ ¼ 0f g: There are differ-

ent notations for Archimedean copulae. A bivariate

Clayton copulae can be presented so that

C u1; u2ð Þ ¼ ψ*1 ψ u1ð Þ þ ψ u2ð Þð Þ ¼ u*δ
1 þ u*δ

2 * 1
 !1=δ

(25)

The Clayton copula has the minimum tail-depen-

dence. The coefficient is calculated according to

λl ¼ 2*1=δ. For the bivariate Clayton copulae, the

following simplifications are given:

δ̂ ¼
2ρ̂τ

1 * ρ̂τ
(26)

θ̂ ¼
1

1 * ρ̂τ
(27)

where ρ̂τ is the empirical Kendall rank correlation

(see, for example, Genest and Favre 2007).

In addition, we implemented the strategy of lower

beta coefficient (‘Low Beta’); beta (βÞ is the coeffi-

cient used to evaluate systemic risk of an asset in the

CAPM model (see Sharpe 1964; Lintner 1965;

Mossin 1966); it relates the volatility of an asset,

market and the correlation between them.

We select assets whose volatility is less than the

reference market, in absolute terms, for the con-

struction of the beta portfolio. The process to build

the portfolio can be summarized so that, we get the

beta coefficients of each asset such that

βi ¼
Cov Ri;Rbð Þ

σ2
b

(28)

where the numerator represents the covariance

between assets i and the market b, and the denomi-

nator is the variance of the market.

Then, we select those assets whose β coefficients

and coefficients of tail dependence are below their

respective medians. Finally, we get the weights by

applying an inverse logarithmic scale (this application

can be seen in Pfaff 2013). Both strategies are referred

to as defensive relative to the market (benchmark), as

they are aimed at minimizing systemic risk.

Minimax portfolios based on risk minimization and

optimization of the risk/return ratio

The Minimax model (see Young 1998) aims to mini-

mize the maximum expected loss, thus it is a very

conservative criterion. Formally, when it is applied

to the selection of portfolios, given N assets and t

periods, the model can be presented as a linear

programming problem, such that

minMp;w
Mp (29)

Mp  
X

m

j¼1

wjri;j " 0;"i ¼ 1; . . . ; nf g

X

m

j¼1

wjμJ ¼ C

X

m

j¼1

wj ¼ 1

wj % 0;"j 2 1; . . . ; nf g

where Mp is the target value to minimize, which

represents the maximum loss of the portfolio given

a weight vector w, C is a certain minimum level of

return, and μ denote the forecast for the returns
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vector of m values. In principle, Minimax is consis-

tent with the theory of expected utility in the limit

based on an investor who is very risk averse.

Furthermore, the minimax model is a good approx-

imation to the mean-variance model when the asset

returns follow a multivariate normal distribution.

If we draw the portfolios set for different levels of

C (using an equality rather than inequality), it is

possible to generate the frontier portfolio from

which the optimal risk portfolio can be chosen. It

is possible to estimate the optimal risk/return using

fractional programming as it is described in Charnes

and Cooper (1962), and more recently in Stoyanov,

Rachev, and Fabozzi (2007). The Minimax linear

programming problem can be reformulated, so that

minMp;wb
Mp (30)

Mp  
X

m

j¼1

wjri;j " 0;"i ¼ 1; . . . ; nf g

X

m

j¼1

wjμJ ¼ 1

X

m

j¼1

wj ¼ b

b % 0

where b is the multiplier coefficient added to the

optimization problem as a result of transformation

of the risk/return problem. More details can be

found in Charnes and Cooper (1962) for LP (linear

programing), and in Dinkelbach (1967) for NLP

(nonlinear programing).

In summary, we use two types of optimization: the

first optimization is based on risk minimization, and the

second optimization is based on the risk/return ratio.

Table 2 provides a list of asset-allocation models

considered.

III. Methodology for evaluating performance

We take the out-of-sample daily returns for one

year, and we assign the weights determined by the

portfolio optimization process to each asset i. We

consider five measures for statistical comparison

between the portfolio strategies: Value at Risk

(VaR), Conditional Value at Risk (CVaR), Sharpe

ratio, diversification ratio and concentration ratio.

Results are provided for three time periods, 2001–

2014, 2001–2007 and 2008–2014.

Value at risk and conditional value at risk

Value at Risk (VaR) is a measure of synthetic risk

that can express the market risk of a financial asset

or portfolio. In general terms, VaR is the maximum

potential loss that a financial asset may suffer with a

certain probability for a certain period of tenure. JP

Morgan tried to establish a market standard by

RiskMetrics in 1994 (JP Morgan 1994).

For a confidence level α 2 0; 1ð Þ; VaR is defined

as the smallest number l such that the probability of

loss L is not greater than 1 α for greater losses

that l. This value corresponds to the quantiles of

loss distribution, and it can be formally

expressed as

VaRα ¼ inf l 2 R : P L>lð Þ " 1 αf g

¼ inf l 2 R : FL lð Þ % αf g (31)

where FL is the distribution function of the losses

(see Pfaff 2013).

The expected shortfall risk measure (ES or CVaR)

arises due to deficiencies that VaR shows. CVaR was

introduced by Artzner et al. (1997, 1999);

Rockafellar and Uryasev (2002) showed that CVaR

is a consistent measure of risk and may also take into

consideration the ‘tail risk’.

CVaR is defined for a type I error α as

ESα ¼
1

1 α
!
1

α
qu FLð Þdu (32)

Table 2. List of asset-allocation models considered.

Methodology Model Abbreviation

1. Naive
Diversification

• Naive strategy of 1/N 1/N

2. Classic • Mean-variance portfolio M-V
3. Robust
Portfolios

• Minimum-variance portfolio
• Most diversified portfolio
• Equal risk contributed portfolio
• Minimum tail-dependent portfolio

GMV
MDP
ERC
MTD

4. CVaR Portfolio • Conditional value at risk portfolio CVaR
5. Draw-down
Portfolios

• Maximum draw-down portfolio
• Average draw-down portfolio
• Conditional draw-down at risk

(95%)
• Minimum conditional draw-down

at risk (95%)

MaxDD
AvDD
CDaR95
MinCDaR95

6. Minimax
Portfolios

• Minimax based on risk
minimization

• Minimax based on the risk/return
ratio

R-Minimax
O-Minimax

7. Defensive
Portfolios

• Minimum tail-dependent with
Clayton copulae

• Low beta portfolio

Clayton
(MTD)
Beta
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where qu FLð Þ is the quantile function of loss distri-

bution FL. Therefore ES can be expressed in VaR

terms such that

ESα ¼ 1

1# α

 
1

α

VaRu Lð Þdu (33)

ES can be interpreted as the VaR average in the

range 1# α; 1ð Þ.

Sharpe ratio

We calculate the out-of-sample annualized Sharpe

ratio for each strategy z. Sharpe ratio is defined as

the sample mean of out-of-sample excess returns

over the risk-free asset μ̂z, divided by their sample

SD σ̂z, such that

Sharpe R ¼ μ̂z

σ̂z
: (34)

To test the statistical independence of the Sharpe

ratios for each strategy with respect to benchmark,

we calculate the p-value of the difference, using the

approach suggested by Jobson and Korkie (1981)

after making the correction pointed out in

Memmel (2003), and recently applied in DeMiguel,

Garlappi, and Uppal (2009). So that, given two port-

folios a and b, with mean μ̂a; μ̂b; variance σ̂a; σ̂b, and

covariance σ̂a;b about a sample of size N, its checked

by the test statistic ẑJK; the null hypothesis that

H0 : μ̂a=σ̂a # μ̂b=σ̂b ¼ 0. This test is based on the

assumption that income is distributed independently

and identically (IID) in time following a normal

distribution, (see Jobson and Korkie 1981; Memmel

2003).

Diversification ratio and concentration ratio

We define diversification ratio (DR) to any portfolio

P as follows:

DR Pð Þ ¼ w0σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

w0
Pw

p : (7)

The numerator is the weighted average volatility

of the single assets, divided by the portfolio volatility

(portfolio SD). From the above equation we derive

the following expression:

DR Pð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρþ CRð Þ # ρCR
p (8)

where ρ denotes the volatility-weighted average cor-

relation and CR is the volatility-weighted concentra-

tion ratio. The parameter ρ is defined as

ρ ¼

PN
i�j wiσiwjσj

# $

ρij
PN

i�j wiσiwjσj

# $ (35)

The concentration ratio (CR) is the normalized

Herfindahl–Hirschmann index (see Hirschman 1964):

CR Pð Þ ¼

PN
i¼1 wiσið Þ2

PN
i¼1 wiσið Þ2

(36)

IV. Results

In this section, we compare the out-of-sample results

obtained for the various portfolio strategies. For that,

we show the results of the five measures for statistical

comparison between the portfolio strategies, con-

tained in the previous section. The portfolio strategies

results are compared with the Ibex 35 index and the

naive strategy of 1/N. Table A1 in the Appendix

provides descriptive statistics sumarising the beha-

viour during different time perios of the Ibex 35

index and the 15 main models consider in this article.

We take the out-of-sample daily returns for one

year, and we assign the weights determined by the

portfolio optimization process to each asset i con-

sidered, so that we build the portfolio and analyse it

for next year. Therefore, we build portfolios with the

daily returns series of Nt period and they are tested

for the following period, Ntþ1, for

t ¼ 2000; 2001; . . . ; 2013. We have built 14 portfo-

lios for methodological framework, although the

results are aggregated by time periods: 2001–2014,

2001–2007 and 2008–2014.

In the first and second columns of Tables 3–5, we

present the total return (Total Return) and the

annualized return (Annual Return) of each strategy

for the time periods 2001–2014 (Table 3), 2001–2007

(Table 4) and 2008–2014 (Table 5). The value at risk

and the conditional value at risk (1 day) appear in

the third and fourth columns, respectively. The

Sharpe ratio and the p-value of each strategy, includ-

ing the Ibex 35 index, are shown in the fifth column.

We also include the p-value of the difference for

each strategy with respect to Ibex 35 index. In the

last two columns, six and seven, we report the diver-

sification and concentration ratios, respectively.
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Table 3. Summary of main results, 2001–2014 time period.

Portfolio
Total
Return

Annual
Return VaR 95% 1 day

CVaR
95%
1 day

Annualized
Sharpe

ratio (p-value)
Diversification

ratio
Concentration

ratio

Ibex 35 13.21% 0.89% 2.525 3.170 0.0365 (1.000) – –

1/N 46.80% 2.78% 2.165 2.720 0.1321 (0.493) 1.5648 0.0400

M-V 276.37% 9.93% 1.778 2.240 0.5663 (0.005)*** 1.5989 0.1551
GMV 244.31% 9.23% 1.689 2.129 0.5544 (0.009)*** 1.6102 0.1513
MDP 179.21% 7.61% 1.742 2.194 0.4440 (0.038)** 1.7153 0.1113
ERC 81.18% 4.34% 1.988 2.499 0.2239 (0.182) 1.6164 0.0391

MTD 117.47% 5.71% 1.836 2.310 0.3176 (0.092)* 1.6326 0.0973

CVaR 154.00% 6.88% 1.786 2.248 0.3896 (0.096)* 1.5100 0.2059
MaxDD 159.24% 7.04% 2.383 2.997 0.3041 (0.261) 1.3464 0.3830
AvDD 193.39% 7.99% 3.170 3.988 0.2585 (0.338) 1.0788 0.8401
CDaR95 167.64% 7.29% 2.437 3.066 0.3067 (0.251) 1.2765 0.4879
MinCDaR95 291.71% 10.24% 1.937 2.441 0.5375 (0.030)** 1.4157 0.2901
R-Minimax 105.82% 5.29% 2.006 2.523 0.2707 (0.239) 1.4725 0.2141
O-Minimax 247.09% 9.3% 2.188 2.754 0.4317 (0.096)* 1.2563 0.5223
Clayton (MTD) 184.78% 7.76% 1.852 2.332 0.4257 (0.041)** 1.6932 0.0954

Beta 246.43% 9.28% 1.705 2.148 0.5515 (0.008)*** 1.6783 0.1008

Table 4. Summary of main results, 2001–2007 time period.

Portfolios Total Return Annual Return
VaR 95%
1 day

CVaR 95%
1 day

Annualized Sharpe ratio
(p-value)

Diversification
ratio

Concentration
ratio

Ibex 35 67.2% 7.62% 2.038 2.566 0.3805 (1.000) – –

1/N 139.01% 13.26% 1.579 1.994 0.8410 (0.045)** 1.7043 0.0416

M-V 160.57% 14.64% 1.302 1.648 1.1173 (0.015)** 1.7405 0.1131
GMV 173.18% 15.44% 1.247 1.580 1.2237 (0.008)*** 1.7656 0.1061
MDP 126.14% 12.36% 1.333 1.684 0.9267 (0.095)* 1.8935 0.0904

ERC 143.36% 13.55% 1.430 1.807 0.9458 (0.024)** 1.7764 0.0419

MTD 129.88% 12.59% 1.359 1.718 0.9280 (0.041)** 1.7629 0.0794

CVaR 138.64% 13.23% 1.326 1.676 0.994 (0.074)* 1.6635 0.1581
MaxDD 124.13% 12.22% 1.708 2.154 0.7201 (0.448) 1.4408 0.3433
AvDD 84.53% 9.15% 2.795 3.518 0.3332 (0.978) 1.1311 0.7649
CDaR95 133.05% 12.85% 1.783 2.250 0.7248 (0.418) 1.4006 0.3882
MinCDaR95 146.73% 13.77% 1.623 2.049 0.8500 (0.216) 1.5151 0.2409
R-Minimax 127.53% 12.46% 1.461 1.846 0.8541 (0.127) 1.5664 0.2012
O-Minimax 67.69% 7.66% 1.882 2.369 0.4142 (0.936) 1.3620 0.4025
Clayton (MTD) 168.32% 15.14% 1.381 1.747 1.0895 (0.051)* 1.8634 0.0989
Beta 167.13% 15.07% 1.249 1.581 1.1946 (0.020)** 1.8572 0.0928

Results for the period comprises between 2001 and 2007. In parenthesis, the p-value corresponding to the ẑJK test; The asterisks show the significance of the
tests: weak significance (*), moderate significance (**), strong significance (***).Bold values indicates the five best-performing portfolios according to each
metric.

Table 5. Summary of main results, 2008–2014 time period.

Portfolios
Total
Return

Annual
Return

VaR
95%
1 day

CVaR
95%
1 day

Annualized
Sharpe

ratio (p-value)
Diversification

ratio
Concentration

ratio

Ibex 35 −31.48% −5.26% 2.879 3.609 −0.1873 (1.000) – –

1/N −38.58% −6.73% 2.599 3.256 −0.2663 (0.481) 1.4252 0.0383

M-V 44.44% 5.39% 2.126 2.674 0.2559 (0.065)* 1.4573 0.1971
GMV 26.03% 3.36% 2.017 2.534 0.1687 (0.171) 1.4548 0.1964
MDP 23.47% 3.06% 2.054 2.580 0.1508 (0.171) 1.5370 0.1322
ERC −25.55% −4.13% 2.398 3.006 −0.1765 (0.938) 1.4564 0.0362

MTD −5.40% −0.79% 2.192 2.751 −0.0368 (0.508) 1.5023 0.1153

CVaR 6.43% 0.89% 2.154 2.705 0.0422 (0.407) 1.3565 0.2538
MaxDD 15.66% 2.10% 2.846 3.575 0.0749 (0.335) 1.2521 0.4227
AvDD 58.99% 6,85% 3.436 4.321 0.2010 (0.201) 1.0264 0.9153
CDaR95 14.84% 2.00% 2.900 3.643 0.0699 (0.357) 1.1524 0.5876
MinCDaR95 58.76% 6.83% 2.171 2.731 0.3165 (0.081)* 1.3162 0.3392
R-Minimax −9.54% −1.42% 2.401 3.012 −0.0605 (0.637) 1.3786 0.2270
O-Minimax 106.98% 10,95% 2.424 3.053 0.4522 (0.049)** 1.1506 0.6421
Clayton (MTD) 6.13% 0.85% 2.213 2.778 0.0393 (0.292) 1.5229 0.0919

Beta 29.69% 3.78% 2.045 2.570 0.1872 (0.104) 1.4993 0.1089

Results for the period comprises between 2008 and 2014. In parenthesis, the p-value corresponding to the ẑJK test; The asterisks show the significance of the
tests: weak significance (*), moderate significance (**), strong significance (***).Bold values indicates the five best-performing portfolios according to each
metric.
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Out-of-sample performance: 2001–2014

Five strategies have an annual return equal or greater

than 9%, compared with the Ibex 35 index, that does

not exceed 1% by year. This can be seen more intuitive

when considering the total return since 2001. The

MinCDaR95 portfolio achieved a total return equal to

291.71%, followed by the MV, O-Minimax, Beta and

GMV portfolios, with a total return greater than 240%.

During the same period, the Ibex 35 index increased

13.21%, being followed in terms of lower returns by

two portfolios based on the naive diversification, the 1/

N and ERC strategies, with a total return of 46.80% and

81.18%, respectively. All strategies have a lower VaR

and CVaR than the Ibex 35 index (2.52 and 3.17),

except the AvDD portfolio. The GMV portfolio stands

out as the portfolio with lower VaR and CVaR (1.77

and 2.12, respectively).

Four strategies achieve an annualized Sharpe ratio

of 0.5. The MV portfolio emerges with a Sharpe ratio

equal to 0.566, followed by the GMV, the Beta and

the MinCDaR95 portfolios with 0.554, 0.551 and

0.537, respectively. Considering the p-value, the

above-mentioned strategies turn out to be moderate

or very significant, that is, their Sharpe ratios do

differ statistically with respect to the Ibex 35 index.

The 1/N and ERC strategies render Sharpe ratios

well below the MV and GMV portfolios, indeed, if

we exclude the Ibex 35 index, the 1/N and ERC

portfolios have the lowest Sharpe ratios.

The MDP, Clayton (MTD) and Beta strategies

present the highest ratios of diversification, the first

one standing out with a ratio of 1.71. The MDP

portfolio is among the strategies with a higher

Sharpe ratio, showing the possibility to obtain a

high Sharpe ratio and at the same time a consider-

able diversification ratio. In addition, four strategies

exceed the diversification ratio of the 1/N strategy,

such as the MTD, the ERC, the GMV and the M-V

portfolios. All these with a diversification ratio

between the values of 1.71 (MDP portfolio) and

1.59 (MV portfolio).

Results for the period comprises between 2001 and

2014. In parenthesis, the p-value corresponding to the

ẑJK test; The asterisks show the significance of the tests:

weak significance (*), moderate significance (**), strong

significance (***). Bold values indicates the five best-

performing portfolios according to each metric.

The concentration ratio rewards the largest share

of assets in the portfolio, so the portfolios based on

the naive diversification have the lowest concentra-

tion ratios (the ERC portfolio with 0.039 and the 1/N

portfolio with 0.04), followed by two portfolios

based on the lower tail dependence: the Clayton

(MTD) and MTD portfolios, with 0.095 and 0.097,

respectively. The concentration ratio can be related

to the cost of building the portfolio because the

concentration ratio decreases when the number of

assets increases in the portfolio.

In Figure 1, we show the poor performance of the

Ibex 35 index and the naive strategy of 1/N with

respect to the other four methodologies considered

(with a Sharpe ratio greater than 0.5). The differ-

ences between the Ibex 35 index and the strategies

are relevant from 2002, although the greatest diver-

gence is reached in 2014. At the end of the time

period under study (the year 2014), the Ibex 35

index registered a total return of 13.21% in contrast

to the rest of strategies, which achieved a minimum

total return of 240%, except for the naive strategy of

1/N (with a total return of 46.80%).

Base 100 in February 1st 2001. We represent the

accumulated wealth of an investor who invested 100

currency units on February 1st 2001. We include the

Ibex 35 index, the 1/N portfolio, the M-V portfolio,

the GMV portfolio, the MinCDaR95 portfolio and

the Beta portfolio.

The accumulated wealth generated by the naive

strategy of 1/N was similar to other portfolios during

the 2001–2007 period. However, the naive strategy

performance is very similar to that the of the Ibex 35

index in the 2008–2014 period. In short, this fact

causes that the return of the 1/N portfolio in the

2001–2014 time period is 46.8%, clearly surpassed at

least by nine strategies, among which the

MinCDaR95 and the M-V portfolios stand out.

In 2008 the world economy faced its most dan-

gerous crisis since the Great Depression of the 1930s,

being known as the Global Financial Crisis. Share

prices plunged throughout the world – the Dow

Jones Industrial Average in the United States lost

33.8% of its value in 2008 – and by the end of the

year, a deep recession had enveloped most of the

globe. Therefore, we examine separately the out-of-

sample performance for the 2001–2007 and 2008–

2014 time periods.
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Out-of-sample performance: 2001–2007

The GMV, the Clayton (MTD) and the Beta portfo-

lios achieve an annual return equal or greater than

15%. In total, there are six strategies that outperform

the naive strategy of 1/N, whose annual return is

13.26%. In line with the results for the entire sample

period (2001–2014), the return of the Ibex 35 index

is exceeded by all portfolio strategies. Thus, the MV,

GMV, Clayton (MTD) and Beta portfolios get a total

return equal to or greater than 160%. The GMV

portfolio achieves the higher performance with a

total return of 173.18%, in contrast with the Ibex

35 index, with a total return of 67.20%.

Except for the AvDD portfolio, the rest of

strategies dominate the Ibex 35 index (VaR of

2.03 and CVaR of 2.566) in terms of Value at

Risk and Conditional Value at Risk at one day.

The GMV portfolio is the strategy with the lowest

VaR and CVaR (1.24 and 1.64, respectively) fol-

lowed for the Beta, the M-V and the CVaR port-

folios. In advance, one would expect that the

CVaR portfolio would obtain a lower VaR and

CVaR than other portfolios; however, this strat-

egy is overcome by the three portfolios listed

previously. In addition, there are nine portfolios

that show a smaller VaR and CVaR than that is

obtained for the strategy of 1/N (1.57 and 1.99,

respectively).

The GMV, M-V, Beta, Clayton (MTD) and CVaR

portfolios achieve an annualized Sharpe ratio near or

above 1, in contrast to the Sharpe ratio obtained for

the Ibex 35 index (0.380). The GMV portfolio stands

out with a Sharpe ratio equal to 1.223, followed by

the Beta, M-V and Clayton (MTD) portfolios with

1.194, 1.117 and 1.089, respectively. In addition,

there are nine portfolios whose Sharpe ratios differ

statistically from the Ibex 35, that is, all portfolio

strategies except those based on the minimax

model and the conditional drawdown-at-risk

approaches.

The MDP, Clayton (MTD) and Beta strategies

have the highest diversification ratios, greater than

1.85. On the other hand, the AvDD, O-Minimax and

CDaR95 strategies have low diversification ratios,

none greater than 1.4. The GMV and M-V portfolios

exceed the diversification ratio of the 1/N strategy.

Finally, seven portfolios are able to overcome the

strategy of 1/N in terms of diversification ratio.

Again, portfolios based on the naive diversifica-

tion are those that have a lower concentration ratio,

slightly lower for the 1/N portfolio (0.041). In con-

trast, the AvDD, O-Minimax, CDaR95 and MaxDD

strategies are highly concentrated, in all cases, with a

concentration ratio greater than 0.34, and particu-

larly in the AvDD portfolio with a ratio of 0.76.

In Figure 2, we show the poor performance of the

Ibex 35 index compared to the other six methodologies
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Figure 1. Accumulated wealth, 2001–2014 period.
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under evaluation (the five portfolios with a higher

Sharpe ratio and the naive strategy of 1/N). As can be

seen, the differences between the Ibex 35 index and the

portfolios began from the middle of 2001. From 2001

to 2007, the Ibex35 index achieved a total return of just

over 67%. Meanwhile, the GMV and MV strategies

had a total return greater than 160%. Even the strategy

of 1/N obtained double return (139.01%) than the Ibex

35 index.

The strategy of 1/N provides a good out-of-sam-

ple performance, especially when it is compared with

the Ibex 35 index. However, the 1/N portfolio is

clearly exceeded by other strategies, not only on

return but also on a higher Sharpe ratio, a lower

VaR and CVaR, and greater diversification ratio. In

short, there are five portfolios that completely dom-

inate, except in concentration ratio, the naive strat-

egy of 1/N, among which the GMV, MV and Beta

portfolios stand out.

Base 100 in February 1st 2001. We represent the

accumulated wealth of an investor who invested 100

currency units on February 1st 2001. We include the

Ibex 35 index, the 1/N portfolio, the M-V portfolio,

the GMV portfolio, the Beta portfolio, the Clayton

(MTD) portfolio and the CVaR portfolio.

In conclusion, the weak out-of-simple perfor-

mance of the 1/N strategy in the time period 2001–

2014 contrasts with the good performance of this

portfolio in the time period 2001–2007; this beha-

viour suggests that the 1/N strategy has been quite

poor during the Global Financial Crisis and

European Sovereign Debt Crisis.

Out-of-sample performance: 2008–2014

Four portfolios achieve an annual return higher than

5% in the 2008–2014 period, providing the

O-Minimax portfolio the greatest return, with an

annual return of around 11%. It is an exceptional

case since the rest of strategies are unable to overcome

such threshold of 5% by year. The return obtained is

well below that achieved in the previous period, where

three portfolios rendered annualized returns above

15%. The Ibex 35 index and the 1/N portfolio are in

the opposite direction, with an annual return drop of

5.26% and 6.73%, respectively. Taking this into con-

sideration, the relative performance of other strategies

is not as poor as it might seem a priori.

If we consider the total return for the period, the

O-Minimax portfolio obtains a return of 100%, fol-

lowed for the AVDD portfolio with a 58.99%, the

MinCDaR95 portfolio with 58.76% and the MV

portfolio with a 44.44% of total return. Meanwhile,

on the opposite side the 1/N portfolio stands out

with a total return of −38.58% and the Ibex 35 index

with a total return of −31.48%. So the strategy of 1/N
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Figure 2. Accumulated wealth, 2001–2007 time period.
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obtained negative returns even higher than those

obtained by the Ibex 35 index.

Regarding the Value at Risk and Conditional

Value at Risk associate with each strategy, it is

again the GMV portfolio which has a lower VaR

and CVaR with 2.01 and 2.53, respectively. The

GMV portfolio is followed by the Beta, MDP, MV

and CVaR portfolios, in no case, with a VaR and

CVaR higher than 2.2 and 2.8. These are good

results if we compare them with the Ibex 35 index

(2.879 and 3.256) and the 1/N strategy (2.599 and

3.256). In this regard, 11 out of the 14 portfolios

have a lower VaR and CVaR with respect to the Ibex

35 index and the 1/N strategy.

All strategies, except the 1/N portfolio (−0266),

obtained Sharpe ratios higher than that for the Ibex

35 index. However, they are only three strategies that

statistically exceed the Sharpe ratio of the Ibex 35

index; this is because the covariance between the port-

folio and the index is very high. The O-Minimax

portfolio has the highest Sharpe ratio (0.452), and the

difference from the Ibex 35 index is moderately sig-

nificant. Regarding the other two portfolios: the

MinCDaR95 (0.315) and the MV (0.255) portfolios,

both present a relatively high Sharpe ratio, although in

both cases the difference is weakly significant.

The MDP, Clayton (MTD) and MTD strategies

have the highest diversification ratios, the MDP with

a remarkable ratio of 1.53, nevertheless somewhat

lower than the value of the 2001–2007 time period,

highlighting the highest correlation between asset

returns in the portfolio during the 2008–2014 period.

Again, the AvDD, CDaR95 and MaxDD portfolios

have the lowest diversification ratio. In total, there

are seven strategies that exceed the diversification

ratio of the 1/N portfolio (1.42), including the Beta

(1,499), MV (1,457) and GMV(1.454) portfolios.

The ERC and 1/N portfolios have the lowest con-

centration ratios, with 0.036 and 0.038, respectively.

The concentration ratio is slightly lower than that in

the 2001–2007 time period due to an increase in the

assets number (see Table 1). In contrast, the AVDD,

O-Minimax and CDaR95 strategies present a higher

concentration ratio, in all cases with a concentration

ratio greater than 0.58. This increase can be

explained by the higher correlation between asset

returns. This fact is widely investigated in recent

papers as Moldovan (2011), for the New York,

London and Tokyo index; and in Ahmad et al.

(2013), for the contagion between financial markets.

In Figure 3, we show the poor performance of the

Ibex 35 index and the 1/N portfolio compared to the
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Accumulated wealth in the 2008–2014 time period. Base 100 in January 2nd 2008. We represent the accumulated wealth of an
investor who invested 100 currency units on January 2nd 2008. We include the Ibex 35 index, the 1/N portfolio, the M-V portfolio,
the O-Minimax portfolio, the MinCDaR95 portfolio, and the Beta portfolio.
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other four methodologies under scrutiny (three port-

folios with Sharpe ratio significantly different to the

Ibex 35 index and the Beta portfolio, which are

almost significant).

The differences between the 1/N portfolio and

the rest of portfolios began from 2008. The 1/N

portfolio performance is worse than the Ibex 35

index, in terms of total return (−38.58%).

Meanwhile and during this period, the Ibex 35

index performance has been quite poor, with a

total return of −31.48% and annualized Sharpe

ratio of −0.187; in contrast with the performance

of the O-Minimax, the MinCDaR95, the MV and

the Beta portfolios, the O-Minimax standing out

with a total return of 106.98% and annualized

Sharpe ratio of 0.452.

The 1/N portfolio performance before and during

the Global Financial Crisis and European sovereign

debt crisis indicates that this strategy has a good

behaviour when the market trend is bullish and

vice versa when it is bearish. The increase in the

correlation between assets has adversely affected

the 1/N portfolio performance during the period

2008–2014.

V. Concluding remarks

In this article, we have examined 15 asset allocation

models in the main Spanish stock market using the

Ibex 35 index. We have compared the total returns,

Sharpe ratios, VaR and CVaR, and the diversifica-

tion and concentration ratios of each portfolio strat-

egy. We have analysed the performance for the daily

returns over a sample of 14 years, divided into two

sub-samples of seven years each one, whose purpose

is to test the robustness of the results in periods of

high and low correlations between assets and with a

market characterized by many bullish and bearish

trends.

We have found that the Sharpe ratio of the mean-

variance (MV) and the minimum variance (GMV)

strategies are higher compared to the naive strategy

of 1/N and the Ibex 35 index, in the 2001–2014

period. All models achieved a Sharpe ratio greater

than the Ibex 35 index during the 2001–2014 period,

although only nine strategies are statistically differ-

ent from it.

Regarding the total return for the 2001–2014 time

period, the MinCDaR95 portfolio is found to deliver

higher returns, followed for the mean-variance, the

Minimax optimization based on risk/return ratio,

the low beta and the minimum variance strategies.

All these gave returns five times greater than those

derived from the naive strategy of 1/N.

The performance of the naive strategy of 1/N is

found not to be much different from other strategies

in the 2001–2007 period, although it is surpassed by

five models, except in concentration ratio, among

which are the mean-variance (M-V) and the mini-

mum variance (GMV) portfolios.

We observed that the 1/N strategy performance is

worse that the Ibex 35 index in the 2008–2014 per-

iod. It is from 2008 when we detected divergences

between the naive strategy of 1/N and the other

strategies. Our findings suggest that the 1/N portfo-

lio seems to show the worst performance during the

Global Financial Crisis and the European sovereign

debt crisis (that is, a time period characterized by a

higher correlation between financial assets and

downtrends in the markets). Furthermore, except

the O-Minimax portfolio, other strategies are found

to outperform the naive strategy of 1/N in a lower

VaR and CVaR, and a higher diversification ratio.

However, we found that the 1/N portfolio has a

lower degree of concentration, although it is to be

expected since it includes all the assets that make up

the Ibex 35 index. A large number of strategies have

been found to produce a better performance than

the Ibex 35 index and the naive strategy of 1/N. We

have shown that most of strategies outperform better

than both the Ibex35 index and the 1/N strategy,

various portfolio strategies achieving higher return,

greater Sharpe ratio, greater diversification ratio and

lower VaR and CVaR than those associated with the

naive strategy of 1/N and the Ibex 35 index.

In addition, our empirical results indicate that

there are several strategies that do not depend on

the expected assets return to assign weights (such as

the GMV, the ERC, the MDP and the MTD strate-

gies) that are also able to overcome the naive strat-

egy of 1/N. Nevertheless, the Markowitz mean-

variance portfolio with short-selling constraint is

found to be the only strategy that achieves a

Sharpe ratio statistically different to the Ibex 35 in

the two time periods analysed (2001–2007 and

2008–2014). In view of the encouraging results of

this article, we suggest that the mean-variance, mini-

mum-variance and conditional draw-down at risk
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(95%) portfolios could be used, at least as a first

reference, when analysing the behaviour of the

main Spanish stock market.

All in all, the results of our analysis are not con-

sistent with those presented in DeMiguel, Garlappi,

and Uppal (2009) and Allen et al. (2014a); although

these are in line with those of Kirby and Ostdiek

(2012) and Allen et al. (2014b) for the hedge fund

indices. Thus, although in all empirical works the

results obtained have to be taken with some degree

of caution (since they are based on a particular index

over a certain time period), our findings lead us to

infer that the naive strategy of 1/N can provide good

results during some episodes, being always exceeded

by several portfolio optimization models.

Acknowledgements

The authors thank the insightful comments of two anon-

ymous referees and the editor that have helped to substan-

tially improve this article. Responsibility for any remaining

errors rests with the authors.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work is supported by the Government of Spain [grant

number ECO2011-23189].

ORCID

Víctor M. Adame http://orcid.org/0000-0002-9338-081X

Simon Sosvilla-Rivero http://orcid.org/0000-0003-2084-

0640

References

Agarwal, V., and N. Y. Naik. 2004. “Risks and Portfolio

Decisions Involving Hedge Funds.” Review of Financial

Studies 17 (1): 63–98. doi:10.1093/rfs/hhg044.

Ahmad, W., S. Sehgal, and N. R. Bhanumurthy. 2013.

“Eurozone Crisis and BRIICKS Stock Markets: Contagion

or Market Interdependence?” Economic Modelling 33: 209–

225. doi:10.1016/j.econmod.2013.04.009.

Alexander, G. J., and A. M. Baptista. 2004. “A Comparison of

Var and Cvar Constraints on Portfolio Selection with the

Mean-Variance Model.” Management Science 50 (9):

1261–1273. doi:10.1287/mnsc.1040.0201.

Allen, D., M. McAleer, S. Peiris, and A. Singh 2014b. Hedge

Fund Portfolio Diversification Strategies across the GFC.

Tinbergen Institute Discussion Paper Series, No. TI

14-151/III.

Allen, D., M. McAleer, R. Powell, and A. Singh. 2014a.

European Market Portfolio Diversification Strategies

across the GFC. Tinbergen Institute Discussion Paper

Series, No. TI 14-134/III.

Andersson, F., H. Mausser, D. Rosen, and S. Uryasev. 2001.

“Credit Risk Optimization with Conditional Value-At-

Risk Criterion.” Mathematical Programming 89 (2): 273–

291. doi:10.1007/PL00011399.

Artzner, P., F. Delbaen, J. Eber, and D. Heath. 1997.

“Thinking Coherently.” Risk 10: 68–71.

Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath. 1999.

“Coherent Measures of Risk.” Mathematical Finance 9

(3): 203–228. doi:10.1111/mafi.1999.9.issue-3.

Benartzi, S., and R. H. Thaler. 2001. “Naive Diversification

Strategies in Defined Contribution Saving Plans.”

American Economic Review 91 (1): 79–98. doi:10.1257/

aer.91.1.79.

Boubaker, H., and N. Sghaier. 2013. “Portfolio Optimization

in the Presence of Dependent Financial Returns with Long

Memory: A Copula Based Approach.” Journal of Banking

and Finance 37 (2): 361–377. doi:10.1016/j.

jbankfin.2012.09.006.

Brennan, M. J., and W. N. Torous. 1999. “Individual

Decision Making and Investor Welfare.” Economic Notes

28 (2): 119–143. doi:10.1111/ecno.1999.28.issue-2.

Chan, L. K., J. Karceski, and J. Lakonishok. 1999. “On

Portfolio Optimization: Forecasting Covariances and

Choosing the Risk Model.” Review of Financial Studies

12 (5): 937–974. doi:10.1093/rfs/12.5.937.

Charnes, A., and W. W. Cooper. 1962. “Programming with

Linear Fractional Functionals.” Naval Research Logistics

Quarterly 9 (3–4): 181–186. doi:10.1002/(ISSN)1931-9193.

Chekhlov, A., S. Uryasev, and M. Zabarankin. 2005.

“Drawdown Measure in Portfolio Optimization.”

International Journal of Theoretical and Applied Finance

8 (01): 13–58. doi:10.1142/S0219024905002767.

Chekhlov, A., S. P. Uryasev, and M. Zabarankin 2000.

Portfolio Optimization with Drawdown Constraints.

Research Report 2000-5. Gainesville: Department of

Industrial and Systems Engineering, University of Florida.

Chopra, V. K. 1993. “Improving Optimization.” The Journal

of Investing 2 (3): 51–59. doi:10.3905/joi.2.3.51.

Choueifaty, Y., and Y. Coignard. 2008. “Toward Maximum

Diversification.” The Journal of Portfolio Management 35

(1): 40–51. doi:10.3905/JPM.2008.35.1.40.

Choueifaty, Y., T. Froidure, and J. Reynier. 2013. “Properties

of the Most Diversified Portfolio.” Journal of Investment

Strategies 2 (2): 49–70.

Clayton, D. G. 1978. “A Model for Association in Bivariate

Life Tables and Its Application in Epidemiological

Studies of Familial Tendency in Chronic Disease

Incidence.” Biometrika 65 (1): 141–151. doi:10.1093/bio-

met/65.1.141.

APPLIED ECONOMICS 3843



DeMiguel, V., L. Garlappi, and R. Uppal. 2009. “Optimal

versus Naive Diversification: How Inefficient Is the 1/N

Portfolio Strategy?” Review of Financial Studies 22 (5):

1915–1953. doi:10.1093/rfs/hhm075.

DeMiguel, V., and F. J. Nogales. 2009. “Portfolio Selection

with Robust Estimation.” Operations Research 57 (3): 560–

577. doi:10.1287/opre.1080.0566.

Dinkelbach, W. 1967. “On Nonlinear Fractional

Programming.” Management Science 13 (7): 492–498.

doi:10.1287/mnsc.13.7.492.

Fernandez-Perez, A., F. Fernández-Rodríguez, and S.
Sosvilla-Rivero. 2014. “The Term Structure of Interest
Rates as Predictor of Stock Returns: Evidence for the
IBEX 35 during a Bear Market.” International Review of

Economics and Finance 31: 21–33. doi:10.1016/j.
iref.2013.12.004.

Fischer, M. J., and M. Dörflinger 2006. A Note on A Non-
Parametric Tail Dependence Estimator.
Diskussionspapiere, No. 76/2006. Friedrich-Alexander-
Universität Erlangen-Nürnberg, Lehrstuhl für Statistik
und Ökonometrie.

Frahm, G., M. Junker, and R. Schmidt. 2005. “Estimating the
Tail-Dependence Coefficient: Properties and Pitfalls.”
Insurance: Mathematics and Economics 37 (1): 80–100.

Frost, P. A., and J. E. Savarino. 1988. “For Better
Performance: Constrain Portfolio Weights.” The Journal

of Portfolio Management 15 (1): 29–34. doi:10.3905/
jpm.1988.409181.

Gaivoronski, A. A., and G. Pflug. 2005. “Value-At-Risk in
Portfolio Optimization: Properties and Computational
Approach.” Journal of Risk 7 (2): 1–31.

Genest, C., and A.-C. Favre. 2007. “Everything You Always
Wanted to Know about Copula Modeling but Were Afraid
to Ask.” Journal of Hydrologic Engineering 12 (4): 347–368.
doi:10.1061/(ASCE)1084-0699(2007)12:4(347).

Giamouridis, D., and I. D. Vrontos. 2007. “Hedge Fund
Portfolio Construction: A Comparison of Static and
Dynamic Approaches.” Journal of Banking and Finance

31 (1): 199–217. doi:10.1016/j.jbankfin.2006.01.002.
Harris, R. D., and M. Mazibas. 2013. “Dynamic Hedge Fund

Portfolio Construction: A Semi-Parametric Approach.”
Journal of Banking and Finance 37 (1): 139–149.
doi:10.1016/j.jbankfin.2012.08.017.

Hirschman, A. O. 1964. “The Paternity of an Index.”
American Economic Review 54 (5): 761–762.

Hofert, M., and M. Scherer. 2011. “CDO Pricing with Nested
Archimedean Copulas.” Quantitative Finance 11 (5): 775–
787. doi:10.1080/14697680903508479.

Huberman, G., and W. Jiang. 2006. “Offering versus Choice
in 401 (K) Plans: Equity Exposure and Number of Funds.”
The Journal of Finance 61 (2): 763–801. doi:10.1111/
jofi.2006.61.issue-2.

Jagannathan, R., and T. Ma. 2003. “Risk Reduction in Large
Portfolios: Why Imposing the Wrong Constraints Helps.”
The Journal of Finance 58 (4): 1651–1683. doi:10.1111/
jofi.2003.58.issue-4.

Jobson, J. D., and B. M. Korkie. 1981. “Performance
Hypothesis Testing with the Sharpe and Treynor
Measures.” The Journal of Finance 36 (4): 889–908.
doi:10.1111/j.1540-6261.1981.tb04891.x.

Jorion, P. 1991. “Bayesian and CAPM Estimators of the
Means: Implications for Portfolio Selection.” Journal of

Banking and Finance 15 (3): 717–727. doi:10.1016/0378-
4266(91)90094-3.

Kirby, C., and B. Ostdiek. 2012. “It’s All in the Timing:
Simple Active Portfolio Strategies that Outperform Naive
Diversification.” Journal of Financial and Quantitative

Analysis 47 (02): 437–467. doi:10.1017/
S0022109012000117.

Krokhmal, P., J. Palmquist, and S. Uryasev. 2002. “Portfolio
Optimization with Conditional Value-At-Risk Objective
and Constraints.” Journal of Risk 4: 43–68.

Kuutan, E. 2007. “Portfolio Optimization Using Conditional
Value-At-Risk and Conditional Drawdown-At-Risk.”
Doctoral diss., University of Toronto.

Lintner, J. 1965. “The Valuation of Risk Assets and the
Selection of Risky Investments in Stock Portfolios and
Capital Budgets.” The Review of Economics and Statistics

47 (1): 13–37. doi:10.2307/1924119.
Maillard, S., T. Roncalli, and J. Teïletche. 2010. “The

Properties of Equally Weighted Risk Contribution
Portfolios.” The Journal of Portfolio Management 36 (4):
60–70. doi:10.3905/jpm.2010.36.4.060.

Markowitz, H. 1952. “Portfolio Selection.” The Journal of

Finance 7 (1): 77–91.
Markowitz, H. 1959. Portfolio Selection: Efficient

Diversification of Investments. New York: Basil Blackwall.
Matallín, J. C., and A. Fernández-Izquierdo. 2003. “Passive

Timing Effect in Portfolio Management.” Applied

Economics 35 (17): 1829–1837. doi:10.1080/
0003684032000150404.

Matallin, J. C., and L. Nieto. 2002. “Mutual Funds as an
Alternative to Direct Stock Investment: A Cointegration
Approach.” Applied Financial Economics 12 (10): 743–750.
doi:10.1080/09603100110038693.

Memmel, C. 2003. “Performance Hypothesis Testing with the
Sharpe Ratio: The Case of Hedge Funds.” Finance

Research Letters 10 (4): 196–208.
Miralles-Quirós, J. L., M. M. Miralles-Quirós, and J. Daza-

Izquierdo. 2015. “Intraday Patterns and Trading Strategies
in the Spanish Stock Market.” Applied Economics 47 (1):
88–99. doi:10.1080/00036846.2014.962224.

Moldovan, I. 2011. “Stock Markets Correlation: Before and
during the Crisis Analysis.” Theoretical and Applied

Economics 8 (8): 111–122.
Morgan, J. P. 1994. RiskMetrics, Technical Document. New

York: Morgan Guaranty Trust Company.
Mossin, J. 1966. “Equilibrium in a Capital Asset Market.”

Econometrica 34 (4): 768–783. doi:10.2307/1910098.
Pástor, Ľ. 2000. “Portfolio Selection and Asset Pricing

Models.” The Journal of Finance 55 (1): 179–223.
doi:10.1111/jofi.2000.55.issue-1.

3844 V. M. ADAME ET AL.



Pástor, Ľ., and R. F. Stambaugh. 2000. “Comparing Asset

Pricing Models: An Investment Perspective.” Journal of

Financial Economics 56 (3): 335–381. doi:10.1016/S0304-

405X(00)00044-1.

Pfaff, B. 2013. Financial Risk Modelling and Portfolio

Optimization with R. Chichester: John Wiley & Sons.

Pflug, G. C. 2000. “Some Remarks on the Value-At-Risk and

the Conditional Value-At-Risk.” In Probabilistic

Constrained Optimization, edited by Uryasev, S. P., 272–

281. New York: Springer US.

Qian, E. 2005. Risk Parity Portfolios: Efficient Portfolios

through True Diversification. Boston, MA: Panagora

Asset Management.

Qian, E. 2006. “On the Financial Interpretation of Risk

Contribution: Risk Budgets Do Add Up.” Journal of

Investment Management 4 (4): 1–11.

Qian, E. 2011. “Risk Parity and Diversification.” The Journal

of Investing 20 (1): 119–127. doi:10.3905/joi.2011.20.1.119.

Quaranta, A. G., and A. Zaffaroni. 2008. “Robust

Optimization of Conditional Value at Risk and Portfolio

Selection.” Journal of Banking and Finance 32 (10): 2046–

2056. doi:10.1016/j.jbankfin.2007.12.025.

Rockafellar, R. T., and S. Uryasev. 2000. “Optimization of

Conditional Value-At-Risk.” Journal of Risk 2: 21–42.

Rockafellar, R. T., and S. Uryasev. 2002. “Conditional Value-

At-Risk for General Loss Distributions.” Journal of

Banking and Finance 26 (7): 1443–1471. doi:10.1016/

S0378-4266(02)00271-6.

Rockafellar, R. T., S. Uryasev, and M. Zabarankin. 2006.

“Generalized Deviations in Risk Analysis.” Finance and

Stochastics 10 (1): 51–74. doi:10.1007/s00780-005-0165-8.

Rosillo, R., D. De La Fuente, and J. A. L. Brugos. 2013.

“Technical Analysis and the Spanish Stock Exchange:

Testing the RSI, MACD, Momentum and Stochastic

Rules Using Spanish Market Companies.” Applied

Economics 45 (12): 1541–1550. doi:10.1080/

00036846.2011.631894.

Schmidt, R., and U. Stadtmüller. 2006. “Non-parametric

Estimation of Tail Dependence.” Scandinavian Journal of

Statistics 33 (2): 307–335. doi:10.1111/j.1467-

9469.2005.00483.x.

Sharpe, W. F. 1964. “Capital Asset Prices: A Theory of

Market Equilibrium under Conditions of Risk.” The

Journal of Finance 19 (3): 425–442.

Sharpe, W. F. 1994. “The Sharpe Ratio.” The Journal of

Portfolio Management 21 (1): 49–58. doi:10.3905/

jpm.1994.409501.

Sklar, M. 1959. “Fonctions de répartition à n dimensions et

leurs marges.” Université Paris 8: 229–231.

Stoyanov, S. V., S. T. Rachev, and F. J. Fabozzi. 2007.

“Optimal Financial Portfolios.” Applied Mathematical

Finance 14 (5): 401–436. doi:10.1080/13504860701255292.

Tsao, C.-Y. 2010. “Portfolio Selection Based on the Mean-

Var Efficient Frontier.” Quantitative Finance 10 (8): 931–

945. doi:10.1080/14697681003652514.

Tu, J., and G. Zhou. 2011. “Markowitz Meets Talmud: A

Combination of Sophisticated and Naive Diversification

Strategies.” Journal of Financial Economics 99 (1): 204–

215. doi:10.1016/j.jfineco.2010.08.013.

Unger, A. 2014. The Use of Risk Budgets in Portfolio

Optimization. Bremen: Springer Gabler.

Xing, X., J. Hu, and Y. Yang. 2014. “Robust Minimum

Variance Portfolio with L-Infinity Constraints.” Journal

of Banking and Finance 46: 107–117. doi:10.1016/j.

jbankfin.2014.05.004.

Young, M. R. 1998. “A Minimax Portfolio Selection Rule

with Linear Programming Solution.” Management

Science 44 (5): 673–683. doi:10.1287/mnsc.44.5.673.

APPLIED ECONOMICS 3845



Appendix

In this appendix, we include two tables: Table A1 pre-

sents six descriptive statistic that provide information

about the behaviour of the Ibex 35 index and the 15

main models consider in this article. Table A2 offers the

assets name that we have considered for the portfolio

construction.

Table A1. Summary statistics during different time periods.

Portfolios Time Period Min 1st quartile Median Mean 3st quartile Max

Ibex 35 2001–2014 −9.1408 −0.7367 0.0694 0.0151 0.7663 14.4349
2001–2007 −5.8171 −0.6104 0.0866 0.0371 0.6838 5.9599
2008–2014 −9.1408 −0.8937 0.0320 −0.0059 0.8756 14.4349

1/N 2001–2014 −8.1174 −0.6218 0.0644 0.0194 0.7184 10.8051
2001–2007 −5.3981 −0.4502 0.0900 0.0543 0.6279 4.0264
2008–2014 −8.1174 −0.8157 0.0389 −0.0149 0.8254 10.8051

M-V 2001–2014 −7.1356 −0.5125 0.0815 0.0433 0.6068 10.5063
2001–2007 −3.6690 −0.3683 0.0802 0.0577 0.5077 5.9757
2008–2014 −7.1356 −0.6975 0.0858 0.0291 0.7327 10.5063

GMV 2001–2014 −6.9594 −0.4884 0.0638 0.0402 0.5883 10.0633
2001–2007 −3.9029 −0.3608 0.0869 0.0601 0.4840 6.1715
2008–2014 −6.9594 −0.6285 0.0485 0.0206 0.7007 10.0633

MDP 2001–2014 −7.4434 −0.4782 0.0709 0.0346 0.6107 10.8855
2001–2007 −4.1242 −0.3760 0.0780 0.0498 0.5113 6.6558
2008–2014 −7.4434 −0.6320 0.0683 0.0197 0.7065 10.8855

ERC 2001–2014 −7.7076 −0.5593 0.0663 0.0241 0.6684 10.5324
2001–2007 −4.9052 −0.3944 0.0913 0.0545 0.5822 3.7957
2008–2014 −7.7076 −0.7731 0.0366 −0.0059 0.7634 10.5324

MTD 2001–2014 −6.7086 −0.5082 0.0715 0.0282 0.6168 10.9713
2001–2007 −4.5205 −0.39020 0.0675 0.0509 0.5473 5.7833
2008–2014 −6.7086 −0.6882 0.0798 0.0058 0.7177 10.9713

CVaR 2001–2014 −7.1332 −0.5122 0.0424 0.0323 0.6066 11.5357
2001–2007 −4.4808 −0.3877 0.0490 0.0528 0.5217 6.6697
2008–2014 −7.1332 −0.7053 0.0235 0.0121 0.7347 11.5357

MaxDD 2001–2014 −11.5167 −0.6781 0.0263 0.0373 0.7447 13.7449
2001–2007 −6.0443 −0.5381 0.0279 0.0515 0.6501 5.7198
2008–2014 −11.5167 −0.8617 0.0175 0.0233 0.8961 13.7449

AvDD 2001–2014 −13.0517 −0.8659 0.0007 0.0489 0.9324 16.7182
2001–2007 −9.2679 −0.7592 0.0284 0.0496 0.8220 12.6075
2008–2014 −13.0517 −0.9841 0.0000 0.0483 1.07235 16.7182

CDaR95 2001–2014 −10.7980 −0.7045 0.0225 0.0387 0.7942 12.9975
2001–2007 −6.1414 −0.5546 0.0485 0.0542 0.6864 5.2095
2008–2014 −10.7980 −0.9299 0.0000 0.0235 0.9433 12.9975

MinCDaR95 2001–2014 −7.3623 −0.5445 0.0339 0.0455 0.6411 10.5430
2001–2007 −5.0936 −0.4068 0.0368 0.0564 0.5224 10.5430
2008–2014 −7.3623 −0.6770 0.0269 0.0348 0.7544 10.3252

R-Minimax 2001–2014 −7.0666 −0.5786 0.0268 0.0278 0.6569 11.2922
2001–2007 −4.3382 −0.4408 0.0303 0.0508 0.5370 4.35426
2008–2014 −7.0666 0.754 0.0233 0.0050 0.7896 11.2922

O-Minimax 2001–2014 −8.8971 −0.6851 0.0576 0.0441 0.7309 11.3846
2001–2007 −6.4801 −0.5924 0.0597 0.0361 0.6588 7.8800
2008–2014 −8.8971 −0.7579 0.0368 0.0520 0.8326 11.3846

Clayton (MTD) 2001–2014 −7.2840 −0.5064 0.0764 0.0360 0.6483 10.9520
2001–2007 −4.5469 −0.3797 0.0895 0.0598 0.5767 4.9972
2008–2014 7.2840 −0.6836 0.0567 0.0124 0.7741 10.9520

Beta 2001–2014 −7.0623 −0.4720 0.0619 0.0405 0.6003 11.2040
2001–2007 −4.5521 −0.3687 0.0671 0.0589 0.5053 6.3157
2008–2014 −7.0623 −0.6338 0.0531 0.0224 0.6727 11.2040
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Table A2. Assets for the portfolio construction by time period.

Time period
Nº of risky
assets Asset names

03/01/2000
28/12/2001

21 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, Sogecable, Altadis.

02/01/2001
30/12/2002

23 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, Sogecable, Altadis, Zeltia, REE.

02/01/2002
30/12/2003

25 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, Sogecable, Altadis, Zeltia, REE, Gamesa, Inditex.

02/01/2003
30/12/2004

26 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, Sogecable, Altadis, Zeltia, REE, Gamesa, Inditex, Enagas.

02/01/2004
30/12/2005

29 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, Sogecable, Altadis, Zeltia, REE, Gamesa, Inditex, Enagas,
Banco Sabadell, Banesto, Prisa.

03/01/2005
29/12/2006

29 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, Sogecable, Altadis, REE, Gamesa, Inditex, Enagas, Banco
Sabadell, Banesto, Prisa, Atresmedia, Mediaset.

02/01/2006
28/12/2007

30 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, Sogecable, Altadis, REE, Gamesa, Inditex, Enagas, Banco
Sabadell, Banesto, Prisa, Atresmedia, Mediaset, Banesto.

02/01/2007
30/12/2008

29 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, REE, Gamesa, Inditex, Enagas, Banco Sabadell, Mediaset,
Banesto, BME, Grifols, Abengoa.

02/01/2008
30/12/2009

30 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, REE, Gamesa, Inditex, Enagas, Banco Sabadell, Mediaset,
Banesto, BME, Grifols, Abengoa, Técnicas Reunidas.

02/01/2009
30/12/2010

31 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, REE, Gamesa, Inditex, Enagas, Banco Sabadell, Mediaset,
Banesto, BME, Grifols, Abengoa, Técnicas Reunidas, Arcelormittal.

04/01/2010
30/12/2011

31 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, REE, Gamesa, Inditex, Enagas, Banco Sabadell, Mediaset,
Banesto, BME, Grifols, Abengoa, Técnicas Reunidas, Arcelormittal.

03/01/2011
31/12/2012

32 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, Ebro Foods, REE, Gamesa, Inditex, Enagas, Banco Sabadell, Mediaset,
BME, Grifols, Abengoa, Técnicas Reunidas, Arcelormittal, Amadeus, Caixabank.

02/01/2012
31/12/2013

33 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, Endesa, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol,
Sacyr, Santander, Telefónica, Ferrovial, Indra, REE, Gamesa, Inditex, Enagas, Banco Sabadell, Mediaset, BME, Grifols,
Técnicas Reunidas, Arcelormittal, Amadeus, Caixabank, DIA, Bankia, IAG.

02/01/2013
31/12/2014

35 Abertis, Acciona, ACS, Banco Popular, Bankinter, BBVA, FCC, Gas Natural, Iberdrola, Mapfre, OHL, Repsol, Sacyr,
Santander, Telefónica, Ferrovial, Indra, REE, Gamesa, Inditex, Enagas, Banco Sabadell, Mediaset, BME, Grifols,
Técnicas Reunidas, Arcelormittal, Amadeus, Caixabank, DIA, Bankia, IAG, Viscofan, Jazztel, Ebro Foods.
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